

Quoc-Dung Tran¹, Chuen-Fa Ni¹

¹Graduate Institute of Applied Geology, National Central University, Taiwan City, 32001, Taiwan

Email: tqdung@hcmus.edu.vn

OBJECTIVES

INTRODUCTION

Hydrologic models have been developed and implemented to simulate the dynamics of surface water and groundwater and assess their interactions. The landforms and human activities are essential in quantifying surface water and groundwater interactions (SGIs) for water resources management. Based on the advantages of computational technologies, the integrated hydrologic models (IHMs) have made the coupled solutions possible to analyze complex water resource problems relevant to the SGI systems. Otherwise, in a specific estimation of surface water and groundwater interactions, interflow is a lateral water movement in unsaturated zones in the hydrology system. Interflow assessment for water resources has also become pivotal in supporting land-use planning and regional development. This available water resource from interflow can be considered as the interflow potential for specific reaches of rivers.

(1) To characterize the behaviors of the SGIs in Pingtung Plain Groundwater Basin (PPGB).
(2) To quantify the SGIs induced by complex landforms and human activities in PPGB.
(3) To assess and quantify the interflow potential in Kaoping River.

(4) To validate accuracy between index-overlay and numerical GSFLOW models.

GSFLOW Model

METHODOLOGY

The developed GSFLOW model based on coupling the surface water PRMS modules and the groundwater MODFLOW-2005 packages can only run either PRMS, MODFLOW-2005, or both. GSFLOW model is used to simulate flow with three regions: (1) a boundary between the plant canopy on the top and the soil zone on the bottom, (2) all streams and lakes simulation, and (3) subsurface zone beneath the soil zone. The

STUDY SITE

first region is used PRMS model and the other regions are used MODFLOW-2005 model to simulate hydrologic processes.

Analytical Hierarchical Process Technique (AHP)

AHP is one of the most used methods to perform decision-making processes. It is based on a rational framework for the needed decisions by quantifying the criteria and alternative options and relating those elements to the overall goal.

Monte Carlo Simulation Model

Monte Carlo simulation is a process used to model the probability of various outcomes. It is a technique that helps explain the risk influence and uncertainty in prediction models due to the intervention of random variables. A basis of this method is used to assign multiple values to an uncertain variable, achieve various outcomes, and then average the

numerical model

Results

RESULTS AND DISCUSSIONS

Figure. Conceptual model and boundary conditions: (**a**) The entire Pingtung, (**b**) Upstream area, (**c**) Downstream area, (**d**) HRUs **Figure.** (*a*) The basin-scale model includes the entire PPGB, (*b*) the submodel on the Kaoping River

CONCLUSIONS

(1) Obtain behavior characteristics and quantify the dynamics of SGIs in PPGB induced by complex landforms and human activities using GSFLOW model.

- The GW head differences: over 4 m (in the wet and dry seasons).
- The surface runoff 57% and infiltration 40% of the total precipitation.
- Contribute to streamflow: surface runoff (70%), interflow (20%), GW discharge (10%).
- The interflow rate: wet seasons 200% more than dry seasons.

(2) Develop index-overlay model, assess the interflow potential and quantify the interflow in the downstream area along the Kaoping River.

- Obtain the accuracy verification between index-overlay model and GSFLOW model.
- The average interflow rates: high value in the high elevation upstream zones (3.5 x 10^4 m³/d) and low value (2.0 x 10^4 m³/d) near the coastal zones.
- The rainfall-induced uncertainty (100 realizations) influences strongly interflow rates in wet more than in dry seasons.