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Assessment of future climate change impacts on streamflow and
groundwater by hydrological modeling in the Choushui River Alluvial Fan,
Taiwan

INTRODUCTION
The interaction between groundwater (GW) and surface water (SW) is an important aspect of

water cycle. The assessment of climate change impact on groundwater recharge is a challenge in
hydrological researches because substantial doubts still remain, particularly in arid and semi-arid
regions (Pulido‐Velazquez et al., 2018).

The Soil and Water Assessment Tool (SWAT) (Gassman et al., 2007; Neitsch et al., 2011)
simulates the surface runoff and groundwater dynamics, management practices or climate change on
water quantity at different geographical locations and scales. Future climate data with five-kilometer
spatial resolution, provided by TCCIP, were selected to accommodate the future climatic conditions of
catchment features.

The MODFLOW–NWT (a Newton–Raphson formulation for MODFLOW-2005)(Niswonger et al.,
2011) was used as a SWAT sub-routine, simulating groundwater flow processes and all associated
sources and sinks on time steps in order to improve the solution of unconfined groundwater-flow
problems.

Fig. 1 Schematic of the hydrologic cycle simulation 
processes (Neitsch et al., 2011)

OBJECTIVE
This study were to apply the coupled SWAT-MODFLOW models to estimate streamflow discharge,

percolation, GW recharge, and water exchange between GW and SW in the Choushui River

Alluvial Fan, Taiwan. The research assesses the impact of climate change scenarios influence on

GW recharge in the future.

METHODOLOGY

Fig. 2 Location of the Choushui River Alluvial Fan (CRAF), and 
the delineation in SWAT model.

RESULTS

Outlets
Pearson 

correlation 
coefficient

RMSE (m) 𝐑𝐑𝟐𝟐 𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 NSE

Tzu-Chiang 0.979(0.971) 2.742(1.194) 0.959(0.943) -0.003(-0.131) 0.942(0.866)

Chi-Chou 0.959(0.930) 0.020(0.114) 0.920(0.865) -0.001(0.010) 0.920(0.846)

Tun-Kun 0.865(0.857) 0.354(0.056) 0.749(0.734) 0.289(-0.029) 0.549(0.469)

Pei-Kang 0.865(0.857) 0.354(0.605) 0.749(0.679) 0.289(0.181) 0.549(0.548)

Table 1 Performance of the statistical indices for monthly runoff at the outlets of sub-basins during the calibration (2005-2011)
and validation (2012-2017, bold in brackets) periods with SWAT-CUP calibration.

Fig. 4 Hydrographs of precipitation, observed and the best-fit monthly streamflow at the outlet of Tzu-Chiang bridge during the calibration period (1989-1994) and 
validation period (1995-2000). The outlets of Chi-Chou, Tun-Kun, Pei-Kang Bridges during the calibration period (2005-2011) and validation period (2012-2017). 

Fig.7 Annual recharge rate in Choushui River Alluvial Fan.

Climate change simulation 
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CONCLUSIONS

Confidence in the calibrated model was enhanced by validation through generally good statistical performance for
the temporal pattern of streamflow and groundwater head, with the 𝑹𝑹𝟐𝟐, percent bias (𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃), RMSE, Nash–Sutcliffe model
efficiency coefficients (NSE), mean absolute error, which helps achieve a reliable simulation of the watershed responses.

The reflects of the concept for SWAT-MODFLOW GW recharge by a lumped module in individual sub-basins contribute to
stream network as baseflow. With this simplified implementation of GW dynamics and water exchange between SW-GW (Fig.
5), the spatiotemporal variability of GW recharge for near-term (2021-2040), mid-term (2041-2060), 2061-2080, & long-
term period was estimated under the baseline (Fig. 7) and four representative concentration pathways (RCPs) (Fig. 6).

The climate data adopted in this study is provided by The Taiwan Climate Change Projection
Information and Adaptation Knowledge Platform (TCCIP).Fig. 6 Change in annual GW recharge volume project MIROC5 against baseline under RCP2.6, RCP4.5, RCP6.0, and RCP 8.5 scenarios.

• The simulation results of both models (SWAT, MODFLOW) well fitted the temporal patterns of
streamflow and GW head at the hydrology stations during the calibration and validation
periods. This is a prerequisite step to apply the climate change scenarios to predict GW
recharge in the future.

• During the dry years, the recharge rate seepage from the streams to the shallow aquifer was
possible lower than the GW discharge to the streams.

• GW recharge mainly occurs in the proximal fan area, catching up some high potential recharge
locations in previously delineated sensitive areas for GW recharge by Chen et al. (2013) and
Central Geological Survey, Taiwan.

• According to the top-ranking GCM MIROC5 projections procedure for CRAF, the highest and
lowest effect rates of climate change on GW recharge in the study region from the 2020s to the
2100s were RCP2.6 (66.36%, -41.92%), RCP4.5 (51.86%, -39.48%), RCP6.0 (56.11%,
-40.13%), or RCP8.5 (48.93%, -39.85%). This suggests that even while GW recharge lies in
complicated geological heterogeneity and soil profiles, the effects of climate change still
substantially influence it. These findings help decision-makers and stakeholders devise
sustainable water resource strategies.
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Fig. 3 (d) Set-up boundary conditions;
(e) Observation stations; 
(f) 3D grid elevation; 

Table 2 Performance of the statistical indices for groundwater level during the
calibration (2005-2011) and validation (2012-2017, in brackets) periods by
MODFLOW model

Workflow principle.
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62 0.98 (0.98) 2.31 (2.16) 2.88 (2.67)
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Fig 8. Ratings calculated using the maximum 
estimation probability approach (Chen et al., 2013).
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Fig. 5 The water exchange between stream and groundwater flow 
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Water exchange

Study site:
Choushui River Alluvial fan
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