Geomorphometric characteristics of New Zealand landslide dams

Oliver Korup, 2004
Engineering Geology
73, 13-25
Outline

• Introduction

• Data acquisition

• Status of landslide dams, trigger mechanisms and landslide types

• Geomorphometric properties

• Prediction potential for landslide dam stability

• Discussion and conclusions
Introduction

• Landslide dams are amongst the most obvious and widely recognized of such features in New Zealand.

• The purpose
 - Overview the present state of knowledge on landslide dams
 - Expanded the inventory of landslide dams
LANDSLIDE DAMS IN NEW ZEALAND

Existing lake (area in m³)
- 1.0E+3 - 1.0E+4
- 1.0E+4 - 1.0E+5
- 1.0E+5 - 1.0E+6
- 1.0E+6 - 1.0E+7
- 1.0E+7 - 1.0E+8

× Former landslide dam
Data acquisition
Data acquisition

Previously published accounts
(Adams, 1981; Perrin and Hancox, 1992; Hancox et al., 1997)

Air photos & 25 m DEM

Unpublished sources
Status of landslide dams, trigger mechanisms and landslide types
Status of landslide dams, trigger mechanisms and landslide types
Trigger mechanisms

- Earthquake: 28%
- Rainstorm: 3%
- Other: 3%
- Unknown: 59%
- Tentatively coseismic: 11%
Status of landslide dams, trigger mechanisms and landslide types

Landslide Type

- Rock-block slide: 6%
- Complex: 5%
- Other: 2%
- Unknown: 34%
- Rock fall, slide: 9%
- Debris flow: 12%
- Rock avalanche: 27%
Geomorphometric properties
Geomorphometric properties

(A) Landslide dam
- Landslide dam height H_D (m)
- Landslide dam length L_D (m)
- Landslide dam width W_D (m)
- Landslide dam volume V_D (Mm3)
- Landslide type*
- Trigger mechanism*
- Age*
- Status*

(B) Landslide-dammed lake
- Lake length L_L (m)
- Lake width W_L (m)
- Lake area A_L (km2)
- Lake perimeter P_L (km)
- Lake volume V_L (Mm3)

(C) Upstream catchment
- Catchment area A_C (km2)
- Maximum altitude E_{max} (m)
- Minimum altitude E_{min} (m)
- Relief H_R (m)
- Relief ratio R_R (m/km$^{-2}$)
- Melton’s ruggedness number R_M
- Modal slope ϕ_{mod} (°)
Geomorphometric properties

Lake

Dam Crest

Landslide

A_c

H_R
Geomorphometric properties

![Graph showing relationship between lake volume and landslide (dam) volume.](image)
Prediction potential for landslide dam stability
• Casagli and Ermini (1999)

\[I_b = \log \left(\frac{V_D}{A_c} \right) \]

\[I'_b = \log \left(\frac{V_D}{A_c H_D} \right) \]

\[I_i = \log \left(\frac{V_D}{V_L} \right) \]

<table>
<thead>
<tr>
<th>Index</th>
<th>‘Critical’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockage</td>
<td>(I_b)</td>
</tr>
<tr>
<td></td>
<td>(I_b)</td>
</tr>
<tr>
<td>Blockage*</td>
<td>(I'_b)</td>
</tr>
<tr>
<td></td>
<td>(I'_b)</td>
</tr>
<tr>
<td>Impoundment</td>
<td>(I_i)</td>
</tr>
<tr>
<td></td>
<td>(I_i)</td>
</tr>
</tbody>
</table>
Prediction potential for landslide dam stability

\[I_s = \log\left(\frac{H_D^3}{V_L}\right) \]
Prediction potential for landslide dam stability

\[I_a = \log\left(\frac{H_D^2}{A_C}\right) \]
Prediction potential for landslide dam stability

\[I_r = \log\left(\frac{H_D}{H_R}\right) \]
Prediction potential for landslide dam stability

<table>
<thead>
<tr>
<th>Ranks</th>
<th>Status</th>
<th>n</th>
<th>Test statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_D</td>
<td>Existing</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>34</td>
<td>−1.291</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>L_D</td>
<td>Existing</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>13</td>
<td>−1.458</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>W_D</td>
<td>Existing</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>13</td>
<td>−1.538</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>V_D</td>
<td>Existing</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>41</td>
<td>−2.162</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>V_J</td>
<td>Existing</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>24</td>
<td>−0.903</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>E_{\min}</td>
<td>Existing</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>63</td>
<td>−0.776</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>198</td>
<td>−6.015</td>
</tr>
<tr>
<td>E_{\max}</td>
<td>Existing</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>198</td>
<td>−6.263</td>
</tr>
<tr>
<td>H_R</td>
<td>Existing</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>198</td>
<td>−5.591</td>
</tr>
<tr>
<td>A_C</td>
<td>Existing</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>196</td>
<td>−4.623</td>
</tr>
<tr>
<td>R_R</td>
<td>Existing</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>196</td>
<td>−1.854</td>
</tr>
<tr>
<td>ϕ_{mod}</td>
<td>Existing</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>196</td>
<td>−2.408</td>
</tr>
</tbody>
</table>
Discussion and Conclusion
Discussion

• Geomorphometric parameters
 - H_D
 - V_D
 - V_L
 - A_C
 - H_R

• Discharge & Hydraulic head
Conclusion

• Three new dimensionless bivariate index
 - Backstow index \((I_s)\)
 - Basin index \((I_a)\)
 - Relief index \((I_r)\)

• \(E_{\text{max}}, H_R, A_C, R_R\) show significant differences for sites of former and existing landslide-dammed lakes.
Thank you for your attention
Prediction potential for landslide dam stability

\[I_i = \log\left(\frac{V_D}{V_L}\right) \]
Prediction potential for landslide dam stability

\[I_b = \log \left(\frac{V_D}{A_c} \right) \]
Prediction potential for landslide dam stability

\[I_b' = \log\left(\frac{V_D}{A_c H_D}\right) \]
Multivariate statistical

- Principal component analysis
- Cluster analysis
- Discriminant analysis