Analytical Solution for The Advection-Dispersion Transport Equation in Layered Media

Internal Journal of Heat and Mass Transfer, 56, 274-282

Presenter: Rui-Ping Peng
Advisor: Prof. Jui-Sheng Chen
Date: 2018/12/06
OUTLINE

- Introduction
- Methodology
- Results and Discussion
- Conclusions
INTRODUCTION
INTRODUCTION
$D_1, R_1, u_1, \mu_1, \varepsilon_1$

Layer 1

$D_2, R_2, u_2, \mu_2, \varepsilon_2$

Layer 2
<table>
<thead>
<tr>
<th></th>
<th>Dimension</th>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Niami et al. (1979)</td>
<td>1</td>
<td>Single</td>
</tr>
<tr>
<td>Mikhailov et al. (1984)</td>
<td>1</td>
<td>Single</td>
</tr>
<tr>
<td>Leij et al. (1995)</td>
<td>1</td>
<td>Double</td>
</tr>
<tr>
<td>Liu et al. (1998)</td>
<td>1</td>
<td>Multiple</td>
</tr>
</tbody>
</table>
THE OBJECTIVE

Previous models were not efficient.

Most of previous researches considered single or double layers.

Present research developed a solution for multiple layers, and it is more efficient.
METHODOLOGY
CONCEPTUAL MODEL

\[R_m \frac{\partial c_m}{\partial t} = D_m \frac{\partial^2 c_m}{\partial x^2} - u_m \frac{\partial c_m}{\partial x} - \mu_m c_m \quad x_{m-1} < x < x_m \]
\[m = 1, 2, 3, \ldots, M \]

\[c_m = c_{m+1}, m = 1, 2, \ldots, M - 1 \]
\[k_m \frac{\partial c_m}{\partial x} = k_{m+1} \frac{\partial c_{m+1}}{\partial x} \]

Flow:
\[u_1 c_1 - D_1 \frac{\partial c_1}{\partial x} = u_1 \bar{c}_0 \]

Layer 1

Layer 2

\[x_0 \quad x_1 \quad x_2 \quad x_{M-1} \quad x_M \]

Layer M

\[\frac{\partial c_M}{\partial x} = 0 \]
THE 1-D UNSTEADY A.D.E. IN FINITE COMPOSITE MEDIA OF M LAYERS

\[R_m \frac{\partial c_m}{\partial t} = D_m \frac{\partial^2 c_m}{\partial x^2} - u_m \frac{\partial c_m}{\partial x} - \mu_m c_m \quad x_{m-1} < x < x_m \]

Absorption term Dispersion term Advection term Decay term

- \(c_m \): The concentration of solute in \(m \) layer \([ML^{-3}]\)
- \(R_m \): The retardation factor in \(m \) layer \([-]\)
- \(D_m \): The constant dispersion coefficient in \(m \) layer \([L^2T^{-1}]\)
- \(u_m \): The constant velocity in \(m \) layer \([LT^{-1}]\)
- \(\mu_m \): The decay constant in \(m \) layer \([T^{-1}]\)
RESULTS AND DISCUSSION
VERIFICATION OF SOLUTION

<table>
<thead>
<tr>
<th>Case</th>
<th>Layer m</th>
<th>$u_m (cm/d)$</th>
<th>$D_m (cm^2/d)$</th>
<th>ε_m</th>
<th>R_m</th>
<th>$\mu_m (d^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>25</td>
<td>50</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40</td>
<td>20</td>
<td>0.25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>40</td>
<td>50</td>
<td>0.25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>40</td>
<td>20</td>
<td>0.25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
CONVERGENCE TEST

(Liu et al., 1998)

<table>
<thead>
<tr>
<th>Case</th>
<th>x (cm)</th>
<th>(t = 0.2) day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 5)</td>
<td>(N = 10)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.885</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.743</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.560</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.372</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.223</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case</th>
<th>x (cm)</th>
<th>(t = 0.2) day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N = 5)</td>
<td>(N = 10)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.994</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.941</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.579</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Case 2

<table>
<thead>
<tr>
<th>x (cm)</th>
<th>(n = 30)</th>
<th>(n = 60)</th>
<th>(n = 120)</th>
<th>(L^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.980</td>
<td>0.978</td>
<td>0.978</td>
<td>0.978</td>
</tr>
<tr>
<td>2</td>
<td>0.873</td>
<td>0.868</td>
<td>0.868</td>
<td>0.868</td>
</tr>
<tr>
<td>4</td>
<td>0.608</td>
<td>0.634</td>
<td>0.634</td>
<td>0.634</td>
</tr>
<tr>
<td>6</td>
<td>0.298</td>
<td>0.345</td>
<td>0.345</td>
<td>0.345</td>
</tr>
<tr>
<td>8</td>
<td>0.382</td>
<td>0.131</td>
<td>0.131</td>
<td>0.131</td>
</tr>
<tr>
<td>10</td>
<td>0.549</td>
<td>0.033</td>
<td>0.033</td>
<td>0.033</td>
</tr>
<tr>
<td>12</td>
<td>0.067</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>14</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>16</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
TWO-LAYER MEDIA RESULTS

\[D_1 = 50 \text{(cm}^2/\text{d}) \]
\[R_1 = 3 \]
\[u_1 = 25 \text{(cm/d)} \]
\[\mu_1 = 3 \text{(d}^{-1}) \]
\[\varepsilon_1 = 0.4 \]

\[D_2 = 20 \text{(cm}^2/\text{d}) \]
\[R_2 = 2 \]
\[u_2 = 40 \text{(cm/d)} \]
\[\mu_2 = 4 \text{(d}^{-1}) \]
\[\varepsilon_2 = 0.25 \]

Symbol: Numerical
Line: Analytical

\[t = 0.2d \]
\[t = 0.4d \]
\[t = 0.6d \]
\[t = 0.8d \]
\[t = \infty \]
FIVE-LAYER MEDIA

$Liu et al., 1998$

$D = 7\,(cm^2/d), R = 4.25, u = 10\,(cm/d), \mu = 0\,(d^{-1}), \varepsilon = 0.4$

$D = 18\,(cm^2/d), R = 14, u = 8\,(cm/d), \mu = 0\,(d^{-1}), \varepsilon = 0.5$
FIVE-LAYER MEDIA RESULTS

(Present research)

t = 2d

\(t = 10d \)

\(t = 6d \)

(Liu et al., 1998)

\(t = 2d \)

\(t = 10d \)

\(t = 6d \)
CONCLUSIONS
CONCLUSIONS

1. Developed a closed-form analytical solution of the transient, one-dimensional advection–dispersion transport equation with first-order decay for multi-layered media.

2. The performance of the present analytical solution had faster convergence.
THANKS FOR YOUR ATTENTION!