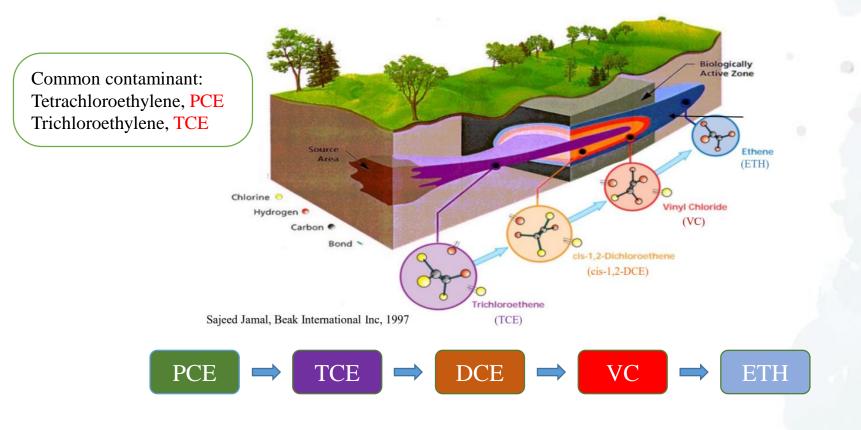
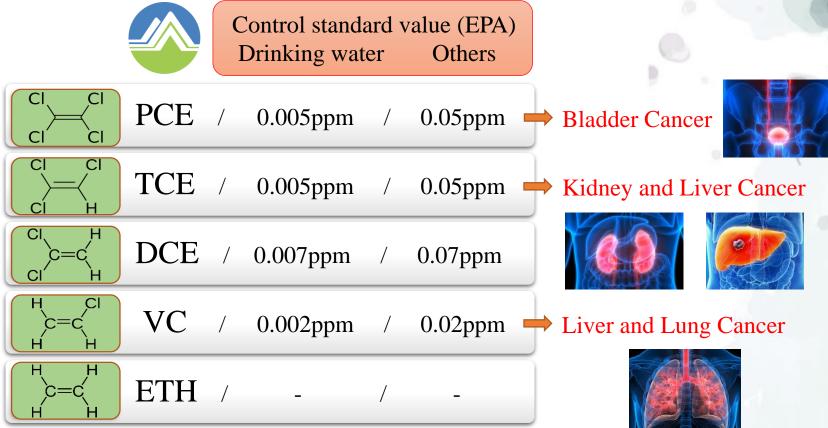

Semi-analytical model of non-equilibrium multi-species transport subject to multiple arbitrary time-dependent pollution sources

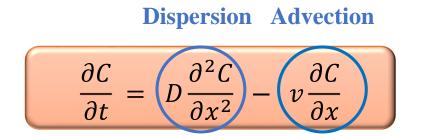
> Advisor : Jui-Sheng Chen Student : Yi-Hsien Chen Date : 2022/3/11


Background

- "No water, no life. No blue, no green." Sylvia Earle
- For those living on the land, freshwater resources are important and precious.

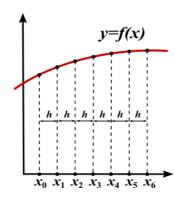

Background

• Industrial waste dumping have caused lots of contaminated problems to environment and also health problems to human-beings after the extensive production since early 20th century.


Relationship between health and chlorinated solvents

 ➡ Serious diseases as cancer could be caused by chlorinated solvents and also of their degradation products.

Mathematical model


- To develop a proper remediation strategy for contaminated site, mathematical model can play an important role to simulate the contaminant transport in the aquifer.
- The pollutant transport models based on classical Advection– Dispersion Equation (ADE) are general tools to estimate the reactive migration in geological formations.

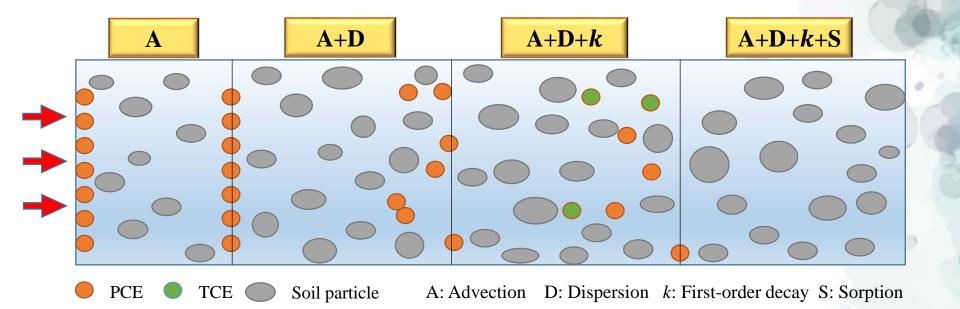
Simple example for ADE

How to solve ADE?

Numerical solutions are commonly used to solve ADE as they considered more geological information to reproduce the real situation, however, there are some limitations that make them impossible to apply widely.

e.g. Finite difference method (FDM)

♥ Currently, analytical solutions are highly sought after as they provide greater insight into the governing transport processes, besides, they also make up for some shortcoming of numerical solutions.
 (Carr, 2021)


Advantages of analytical solutions

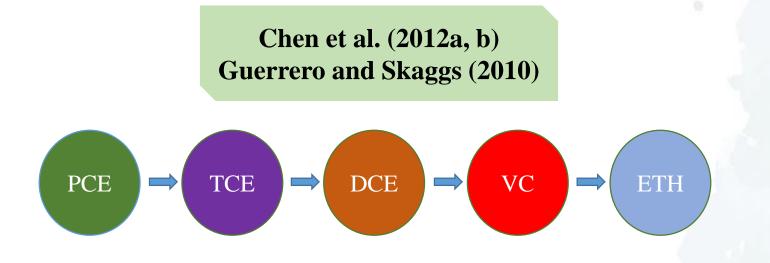
- At sites where many key parameters are uncertain, analytical models can be run with a range of parameter values to screen or bracket the expected site behavior. (Falta and Kueper, 2014)
- Rapidly search for sensitive parameters of the model.
- Computing efficiently without the use of small temporal and spatial discretization step sizes.
- Provide important initial estimates of contaminated sites.

Mechanisms of transportation

Literature review

Analytical model

 Due to the high efficiency of analytical modeling, a number of analytical models has been derived for describing single-species transport of various contaminants.


> Batu (1993) Park and Zhan (2001) Chen and Liu (2011)

 However, the transport processes for some contaminants of concern generally involve a more complicated series of chain degradation reactions.

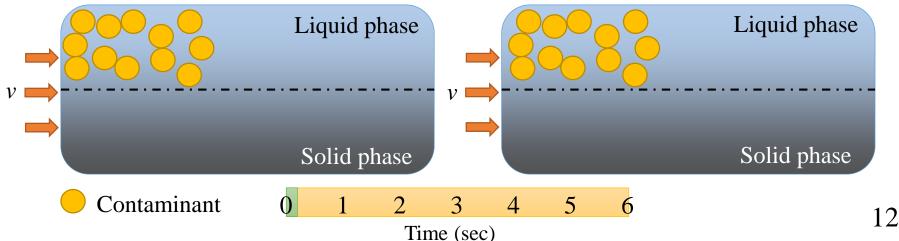
Literature review

Limitation of single-species model

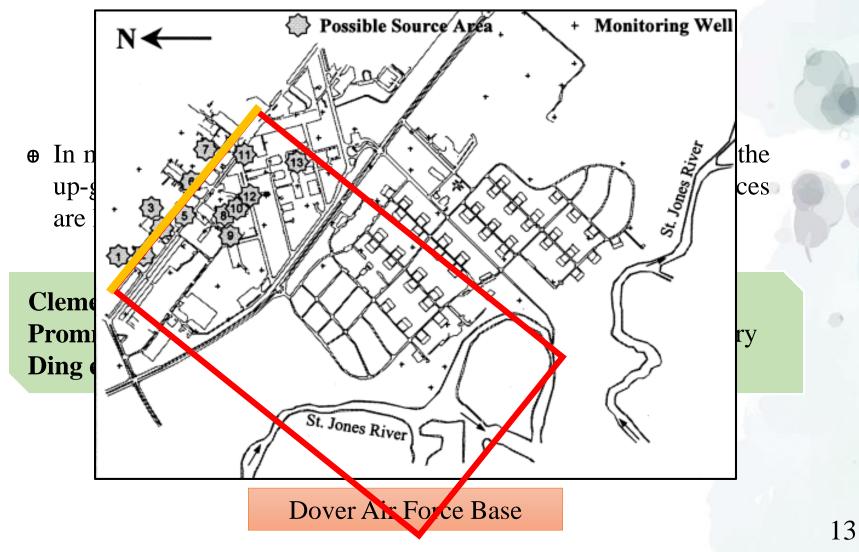
 Single-species transport analytical models are unable to account for mass transformation from the parent species to the daughter species of degradable contaminants. (Chen et al., 2019)

Literature review

Limitation of equilibrium-controlled sorption

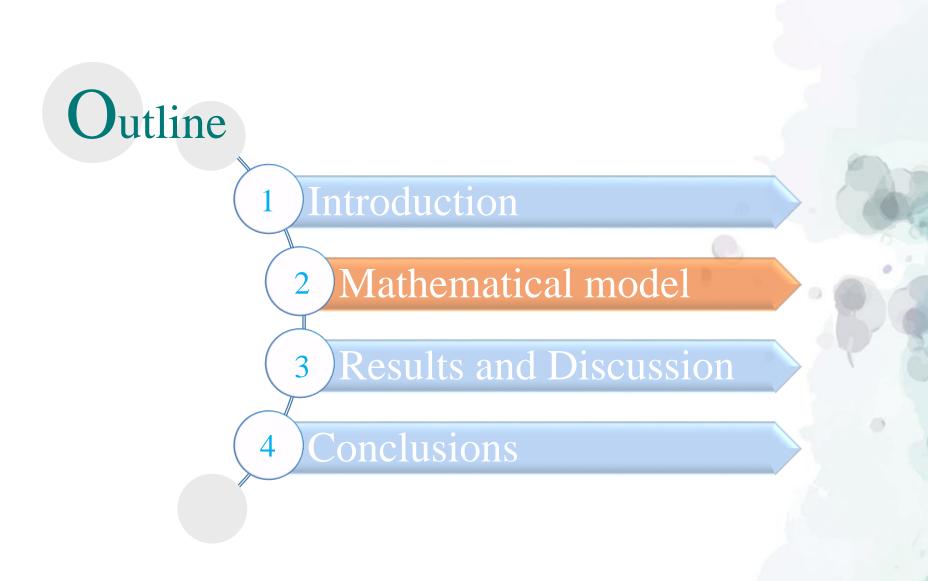

 Models considering equilibrium-controlled sorption often underestimate the concentration of degradable pollutants.

Chen et al. (2019)

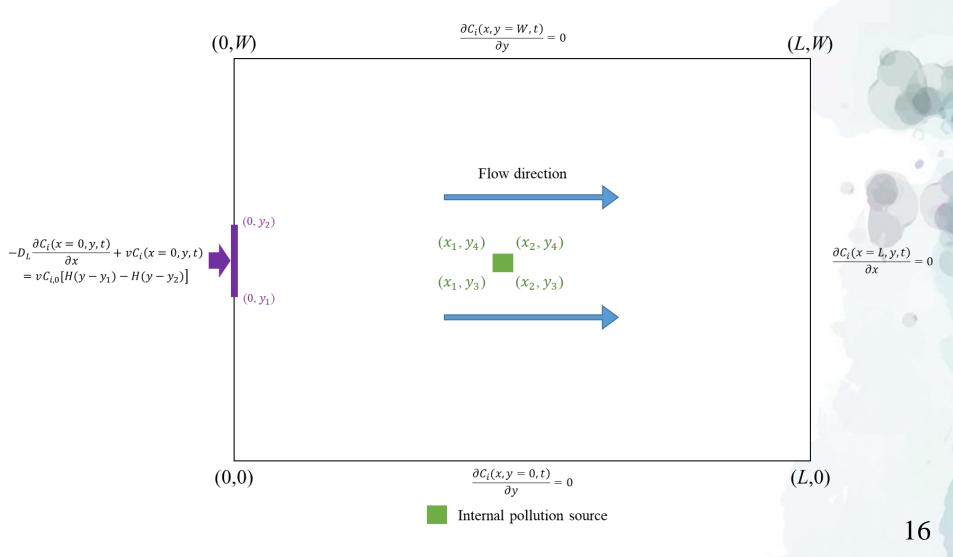

 β_i : sorption reaction rate constant [T⁻¹]

Equilibrium-controlled sorption, $\beta_i = \infty$

Rate-limited sorption, $\beta_i = 0.1$



Literature review



Objective

To develop a semi-analytical model for simulating multi-species advective-dispersive transport which considering rate-limited sorption and subject to multiple internal sources.

Conceptual model

Governing equation

$$D_{L} \frac{\partial^{2} C_{i}(x, y, t)}{\partial x^{2}} - v \frac{\partial C_{i}(x, y, t)}{\partial x} + D_{T} \frac{\partial^{2} C_{i}(x, y, t)}{\partial y^{2}} - k_{i} C_{i}(x, y, t) + k_{i-1} C_{i-1}(x, y, t) + \sum_{m=1}^{NS} \frac{M_{i}^{m}}{\phi} p_{x,i}^{m}(x) p_{y,i}^{m}(y) q_{i}^{m}(t) - \frac{\beta_{i}}{\phi} [C_{i}(x, y, t) - \frac{S_{i}(x, y, t)}{K_{di}}] = \frac{\partial C_{i}(x, y, t)}{\partial t} \qquad i = 1, ..., N$$

• First-order reversible kinetic sorption reaction between the dissolved and sorbed phases.

$$\rho_b \frac{\partial S_i(x, y, t)}{\partial t} = \beta_i [C_i(x, y, t) - \frac{S_i(x, y, t)}{K_{di}}] \qquad i = 1, \dots, N$$

 $C_i(x, t)$: concentration of species i in the dissolved phase [ML⁻³] $S_i(x, t)$: concentration of species i in the sorbed phase [MM⁻¹]

Governing equation

$$D_{L}\frac{\partial^{2}C_{i}(x,y,t)}{\partial x^{2}} - v\frac{\partial C_{i}(x,y,t)}{\partial x} + D_{T}\frac{\partial^{2}C_{i}(x,y,t)}{\partial y^{2}} - k_{i}C_{i}(x,y,t) + k_{i-1}C_{i-1}(x,y,t) + \sum_{m=1}^{NS}\frac{M_{i}^{m}}{\phi}p_{x,i}^{m}(x)p_{y,i}^{m}(y)q_{i}^{m}(t) - \frac{\beta_{i}}{\phi}[C_{i}(x,y,t) - \frac{S_{i}(x,y,t)}{K_{di}}] = \frac{\partial C_{i}(x,y,t)}{\partial t} \qquad i = 1,...,N$$

Dispersion

Due to the heterogeneity of the porous media at the micro scale, the flow path and the flow velocity of the solute in the pore water flow are different.

D: Dispersion coefficient $[L^2T^{-1}]$

Governing equation

$$D_{L} \frac{\partial^{2}C_{i}(x, y, t)}{\partial x^{2}} - \frac{v \frac{\partial C_{i}(x, y, t)}{\partial x}}{\partial x} + D_{T} \frac{\partial^{2}C_{i}(x, y, t)}{\partial y^{2}} - k_{i}C_{i}(x, y, t) + k_{i-1}C_{i-1}(x, y, t) + \sum_{m=1}^{NS} \frac{M_{i}^{m}}{\phi} p_{x,i}^{m}(x) p_{y,i}^{m}(y) q_{i}^{m}(t) - \frac{\beta_{i}}{\phi} [C_{i}(x, y, t) - \frac{S_{i}(x, y, t)}{K_{di}}] = \frac{\partial C_{i}(x, y, t)}{\partial t} \qquad i = 1, \dots, N$$

Advection

• Flow velocity of the contaminated plume.

```
v: velocity [LT^{-1}]
```

Governing equation

$$D_{L}\frac{\partial^{2}C_{i}(x,y,t)}{\partial x^{2}} - v\frac{\partial C_{i}(x,y,t)}{\partial x} + D_{T}\frac{\partial^{2}C_{i}(x,y,t)}{\partial y^{2}} - k_{i}C_{i}(x,y,t) + k_{i-1}C_{i-1}(x,y,t) + \sum_{m=1}^{NS}\frac{M_{i}^{m}}{\phi}p_{x,i}^{m}(x)p_{y,i}^{m}(y)q_{i}^{m}(t) - \frac{\beta_{i}}{\phi}[C_{i}(x,y,t) - \frac{S_{i}(x,y,t)}{K_{di}}] = \frac{\partial C_{i}(x,y,t)}{\partial t} \qquad i = 1, \dots, N$$

First-order degradation

• Describe the concentration change impact by the decay of parent species.

 k_i : first order degradation rate constant $[T^{-1}]$

Governing equation

$$D_{L} \frac{\partial^{2} C_{i}(x, y, t)}{\partial x^{2}} - v \frac{\partial C_{i}(x, y, t)}{\partial x} + D_{T} \frac{\partial^{2} C_{i}(x, y, t)}{\partial y^{2}} - k_{i} C_{i}(x, y, t) + k_{i-1} C_{i-1}(x, y, t) + \sum_{m=1}^{NS} \frac{M_{i}^{m}}{\phi} p_{x,i}^{m}(x) p_{y,i}^{m}(y) q_{i}^{m}(t) - \frac{\beta_{i}}{\phi} [C_{i}(x, y, t) - \frac{S_{i}(x, y, t)}{K_{di}}] = \frac{\partial C_{i}(x, y, t)}{\partial t} \qquad i = 1, \dots, N$$

Source

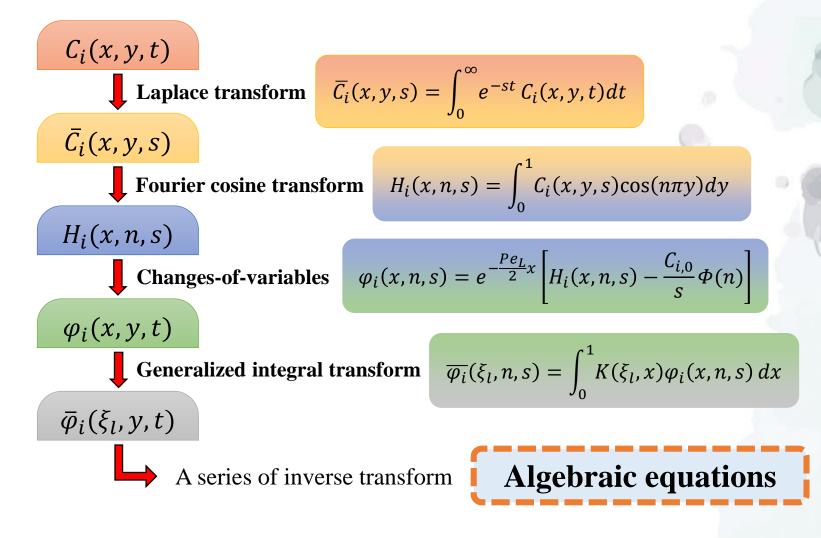
- Represent the sources that inject contaminants into the simulation area.
 - NS: Total number of sources

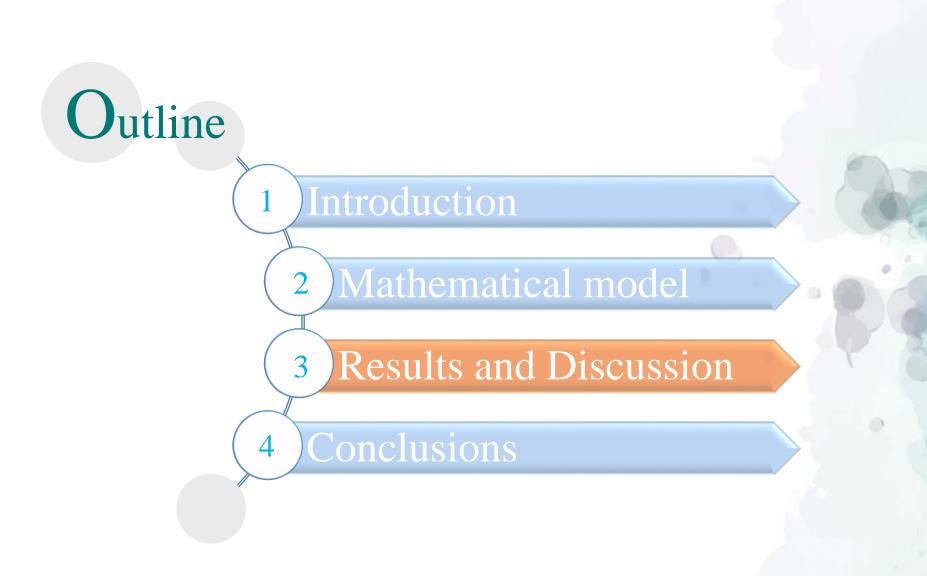
 M_i^m : Mass of species i^{th} in source m^{th} [M]

 p_i^m : Function of species i^{th} changes with distance in source m^{th} [L⁻¹] q_i^m : Function of species i^{th} changes with time in source m^{th} [T⁻¹] ϕ : Porosity [-]

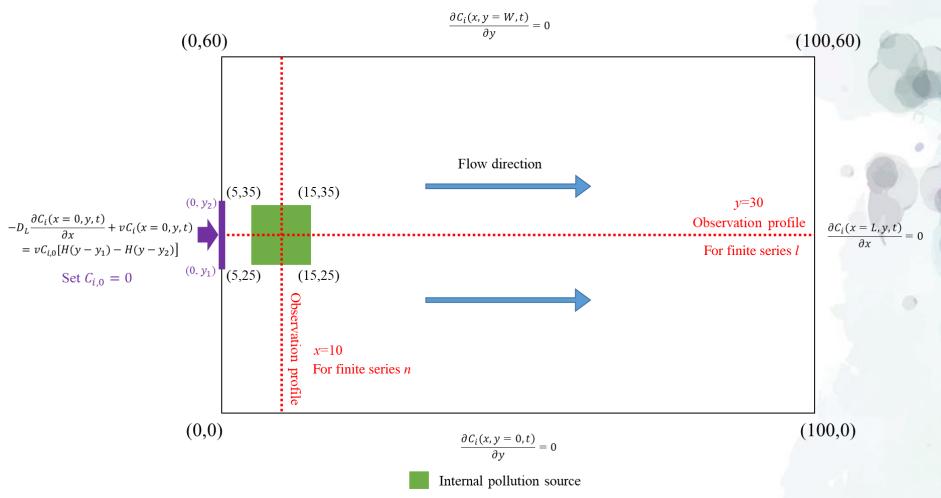
Governing equation

$$D_{L} \frac{\partial^{2} C_{i}(x, y, t)}{\partial x^{2}} - v \frac{\partial C_{i}(x, y, t)}{\partial x} + D_{T} \frac{\partial^{2} C_{i}(x, y, t)}{\partial y^{2}} - k_{i} C_{i}(x, y, t) + k_{i-1} C_{i-1}(x, y, t) + \sum_{m=1}^{NS} \frac{M_{i}^{m}}{\phi} p_{x,i}^{m}(x) p_{y,i}^{m}(y) q_{i}^{m}(t) - \frac{\beta_{i}}{\phi} [C_{i}(x, y, t) - \frac{S_{i}(x, y, t)}{K_{di}}] = \frac{\partial C_{i}(x, y, t)}{\partial t} \qquad i = 1, ..., N$$


Retardation


• Including adsorption or other chemical reactions, which influence the concentration of dissolved contaminants.

 K_{di} : Distribution coefficient of species i^{th} [M⁻¹L³]


 β_i : First-order sorption rate constant of species *i*th between the dissolved and sorbed phases $[T^{-1}]$

Solving process

Convergence test

Convergence test

minant parameters	PCE	ТСЕ	DCE	VC	ETH	
on coefficient [kg m ⁻³]	0.784	0.239	0.230	0.0545	0.556	
ction rate constant [year ⁻¹]	0.5	0.5	0.5	0.5	0.5	
y constant [year ⁻¹]	2.0	1.0	0.7	0.4	0	
cal parameters	Value			(Che	n et al., 2019)
-						
iin length [m]	100	_			a 72	× .
ain width [m]	60	Sourc	e parameter	S	Value	
ty [m year ⁻¹]	1 / 10 / 25	Mass	release [kg]		100	
ion coefficient $[m^2 year^{-1}]$	100	Release	duration [yea	ar]	0~1	
on coefficient [m ² year ⁻¹]	10	Simulation time [year] 1		10		
of the solid grain [kg m ⁻³]	1.6	Sourc	e domain [m]	x: 5~	-15 y: 2	5~35
ve porosity [-]	0.2	Peclet	number (J	$P_{e} = \frac{vL}{vL}$		
		$Peclet number (Pe) = \frac{1}{D_L}$				
	Imminant parametersion coefficient [kg m ⁻³]ion rate constant [year ⁻¹]y constant [year ⁻¹]y constant [year ⁻¹]cal parametersin length [m]ain width [m]ty [m year ⁻¹]sion coefficient [m ² year ⁻¹]on coefficient [m ² year ⁻¹]of the solid grain [kg m ⁻³]we porosity [-]	ion coefficient [kg m ⁻³] 0.784 ction rate constant [year ⁻¹] 0.5 y constant [year ⁻¹] 2.0 cal parameters Value ain length [m] 100 ain width [m] 60 ty [m year ⁻¹] $1/10/25$ sion coefficient [m ² year ⁻¹] 100 on coefficient [m ² year ⁻¹] 100 of the solid grain [kg m ⁻³] 1.6	ion coefficient [kg m ⁻³] 0.784 0.239 ction rate constant [year ⁻¹] 0.5 0.5 y constant [year ⁻¹] 2.0 1.0 cal parameters Value ain length [m] 100 ain width [m] 60 Source sion coefficient [m ² year ⁻¹] $1/10/25$ Mass sion coefficient [m ² year ⁻¹] 100 Simulat of the solid grain [kg m ⁻³] 1.6 Source	ion coefficient [kg m ⁻³] 0.784 0.239 0.230 ction rate constant [year ⁻¹] 0.5 0.5 0.5 y constant [year ⁻¹] 2.0 1.0 0.7 Value sin length [m] 100 ain width [m] 60 Source parameter ty [m year ⁻¹] $1/10/25$ Release duration [year] sion coefficient [m ² year ⁻¹] 100 Simulation time [year] of the solid grain [kg m ⁻³] 1.6 Source domain [m]	ion coefficient [kg m ⁻³] 0.784 0.239 0.230 0.0545 ction rate constant [year ⁻¹] 0.5 0.5 0.5 0.5 y constant [year ⁻¹] 2.0 1.0 0.7 0.4 cal parameters Value ain width [m] 100 $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ ty [m year ⁻¹] 1/10/25 $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ on coefficient [m ² year ⁻¹] 100 $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ on coefficient [m ² year ⁻¹] 100 $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ $\overline{50urc} = parameters$ of the solid grain [kg m ⁻³] 1.6 $\overline{50urc} = domain [m]$ $\overline{50urc} = parameters$ $\overline{50urc} = parameters$	ion coefficient [kg m ⁻³] 0.784 0.239 0.230 0.0545 0.556 ction rate constant [year ⁻¹] 0.5 0.5 0.5 0.5 0.5 0.5 y constant [year ⁻¹] 2.0 1.0 0.7 0.4 0 (Chen et al., 2019 cal parameters Value (Chen et al., 2019 in length [m] 100 Source parameters Value (Chen et al., 2019 ty [m year ⁻¹] 100 Source parameters Value ision coefficient [m ² year ⁻¹] 100 Release [kg] 100 100 final and grain [kg m ⁻³] 1.6 Source domain [m] x: 5~15 y: 2

Convergence test

		PO	CE		
	1=25	1=50	l=75	l=100	l=125
x=0	1.591E+00	1.591E+00	1.591E+00	1 91E+00	1.591E+00
x=20	1.000E+00	1.000E+00	1.000E+00	1.00. +00	1.000E+00
x=40	1.069E-01	1.069E-01	1.069E-01	1.069E-	1.069E-01
x=60	6.253E-03	6.273E-03	6.270E-03	6.270E-03	270E-03
x=80	2.855E-04	2.767E-04	2.730E-04	2.731E-04	2 104
x=100	6.810E-06	2.292E-05	1.906E-05	1.900E-05	1.90.5
TCE					
	1=10	1=20	1=30	1=40	1=50
x=0	3.731E+00	3.726E+00	3.726E+00	3. S6E+00	3.726E+00
x=20	2.782E+00	2.778E+00	2.778E+00	2.77. +00	2.778E+00
x=40	8.036E-01	8.007E-01	8.007E-01	8.007E-	8.007E-01
x=60	1.431E-01	1.404E-01	1.404E-01	1.404E-01	404E-01
x=80	2.095E-02	1.828E-02	1.828E-02	1.828E-02	1 02
x=100	6.440E-03	3.549E-03	3.549E-03	3.550E-03	3.550
		D	CE		
	1=5	l=10	l=15	1=20	1=25
x=0	5.399E+00	5.393E+00	5.392E+00	5. 2E+00	5.392E+00
x=20	4.509E+00	4.511E+00	4.510E+00	4.510 00	4.510E+00
x=40	1.892E+00	1.896E+00	1.895E+00	1.895E+	1.895E+00
x=60	4.871E-01	4.827E-01	4.824E-01	4.824E-01	\$24E-01
x=80	8.057E-02	8.594E-02	8.564E-02	8.564E-02	8 02
x=100	2.675E-02	2.158E-02	2.126E-02	2.126E-02	2.1201. 2
		V	с		
	1=5	1=10	1=15	1=20	1=25
x=0	6.578E+00	6.577E+00	6.577E+00	6E+00	6.577E+00
x=20	6.067E+00	6.067E+00	6.067E+00	6.0671 20	6.067E+00
x=40	3.391E+00	3.392E+00	3.392E+00	3.392E+0	3.392E+00
x=60	1.278E+00	1.278E+00	1.278E+00	1.278E+00	1 78E+00
x=80	3.612E-01	3.624E-01	3.624E-01	3.624E-01	3.62 1
x=100	1.449E-01	1.436E-01	1.436E-01	1.436E-01	1.430
	1		ГН		
	1=4	1=6	1=8	1=10	l=12
x=0	3.626E+00	3.633E+00	3.633E+00	3.6. E+00	3.633E+00
x=20	3.386E+00	3.380E+00	3.380E+00	3.380L 00	3.380E+00
x=40	1.918E+00	1.921E+00	1.921E+00	1.921E+0	
x=60	7.221E-01	7.248E-01	7.247E-01	7.247E-01	47E-01
x=80	2.090E-01	2.008E-01	2.010E-01	2.010E-01	2.01 1

7 690E-02

x=100

6.566E-02

7.707E-02

7.692E-02

		P	CE		
	n=100	n=150	n=200	n=250	n=30
y=0	2.305E-05	2.201E-05	2.215E-05	2.213E-05	2.21
y=10	2.118E-03	2.119E-03	2.119E-03	2.119E-03	2 19E-03
y=20	1.964E-01	1.964E-01	1.964E-01	1.964E-01	1.964E-01
y=30	1.690E+00	1.690E+00	1.690E+00	1.690F 0	1.690E+00
		T	CE		
	n=50	n=80	n=110	n=140	n=1
y=0	3.376E-03	3.377E-03	3.377E-03	3.377E-03	3.37
y=10	6.123E-02	6.123E-02	6.123E-02	6.123E-02	23E-02
y=20	1.054E+00	1.054E+00	1.054E+00	1.054E+00	1.054E+00
y=30	3.691E+00	3.691E+00	3.691E+00	3.691F 0	3.691E+00
			CE		
	n=15	n=20	n=25	n=30	n=2
y=0	1.957E-02	1.936E-02	1.937E-02	1.937E-02	1.93
y=10	2.280E-01	2.281E-01	2.281E-01	2.281E-01	51E-01
y=20	2.220E+00	2.221E+00	2.221E+00	2.221E+00	2.221E+00
y=30	5.420E+00	5.420E+00	5.420E+00	5.420F 0	5.420E+00
		-			
			/C		
	n=8	n=16	n=24	n=33	n=-
y=0	1.211E-01	1.198E-01	1.198E-01	1.198E-01	1.19 2-04
y=10	6.739E-01	6.732E-01	6.732E-01	6.732E-01	.32E-01
y=20	3.598E+00	3.599E+00	3.599E+00	3.599E+06	3.599E+00
y=30	6.763E+00	6.765E+00	6.765E+00	6.765E J0	6.765E+00
		E.	ГН		
				-24	n-20
0	n=6 5.907E-02	n=12 6.459E-02	n=18 6.460E-02	n=24 6.460E-02	n=04
y=0 y=10	3.839E-01	6.459E-02 3.807E-01	6.460E-02 3.807E-01	6.460E-02 3.807E-01	6.46 27E-01
y=10 y=20	2.033E+00	2.030E+00	2.030E+00	2.030E+00	2.030E+00
y=30	3.738E+00	3.744E+00	3.744E+00	3.744F J	3.744E+00

Pe=1 *l*=100 *n*=250

The farther away from the source, the greater the required l and n

Convergence test

	PCE					
		l=50	l=100	l=150	1=200	1=250
	x=0	6.260E-01	6.260E-01	6.260E-01	6.260E-01	6.260E-01
<i>l</i> =200	x=20	1.213E+00	1.213E+00	1.213E+00	1.213E+00	1.213E+00
l=200	x=40	2.862E-01	2.862E-01	2.862E-01	2.862E-01	2.862E-01
	x=60	3.674E-02	3.671E-02	3.671E-02	3.671E-02	3.671E-02
<i>n</i> =300	x=80	3.584E-03	3.500E-03	3.500E-03	3.500E-03	3.500E-03
	x=100	6.615E-04	4.320E-04	4.313E-04	4.322E-04	4.322E-04
			TC	CE		
		l=10	1=20	1=30	1=40	1=50
1 10	x=0	9.888E-01	9.858E-01	9.858E-01	9.858E-01	9.858E-01
l=40	x=20	2.512E+00	2.506E+00	2.506E+00	2.506E+00	2.506E+00
	x=40	1.660E+00	1.650E+00	1.650E+00	1.650E+00	1.650E+00
n = 100	x=60	6.507E-01	6.305E-01	6.305E-01	6.305E-01	6.305E-01
100	x=80	2.283E-01	1.782E-01	1.782E-01	1.782E-01	1.782E-01
	x=100	1.925E-01	5.762E-02	5.754E-02	5.761E-02	5.761E-02
			D	CE		
		1=5	l=10	l=15	1=20	l=25
1 00	x=0	9.917E-01	9.947E-01	9.944E-01	9.944E-01	9.944E-01
l=20	x=20	3.054E+00	3.041E+00	3.040E+00	3.040E+00	3.040E+00
~ ~	x=40	3.148E+00	3.190E+00	3.189E+00	3.189E+00	3.189E+00
n=35	x=60	1.967E+00	1.867E+00	1.865E+00	1.865E+00	1.865E+00
	x=80	4.873E-01	7.462E-01	7.409E-01	7.409E-01	7.409E-01
	x=100	9.631E-01	3.203E-01	3.059E-01	3.061E-01	3.061E-01
			V	C		
		1=4	1=7	l=10	1=13	l=16
	x=0	7.639E-01	7.731E-01	7.729E-01	7.729E-01	7.729E-01
<i>l</i> =13	x=20	2.734E+00	2.715E+00	2.715E+00	2.715E+00	2.715E+00
$\iota - 1J$	x=40	3.954E+00	3.978E+00	3.979E+00	3.979E+00	3.979E+00
n=26	x=60	3.500E+00	3.521E+00	3.520E+00	3.520E+00	3.520E+00
n-20	x=80	2.486E+00	2.226E+00	2.224E+00	2.224E+00	2.224E+00
	x=100	3.200E-01	1.386E+00	1.396E+00	1.395E+00	1.395E+00
			El	ГН		
		1=4	1=6	1=8	1=10	1=12
	x=0	4.003E-01	4.034E-01	4.034E-01	4.034E-01	4.034E-01
l=10	x=20	1.462E+00	1.456E+00	1.456E+00	1.456E+00	1.456E+00
$\iota - 10$	x=40	2.229E+00	2.236E+00	2.236E+00	2.236E+00	2.236E+00
<i>n</i> =18	x=60	2.021E+00	2.030E+00	2.030E+00	2.030E+00	2.030E+00
n-10	x=80	1.371E+00	1.274E+00	1.274E+00	1.274E+00	1.274E+00
	x=100	3.922E-01	7.800E-01	7.813E-01	7.807E-01	7.807E-01

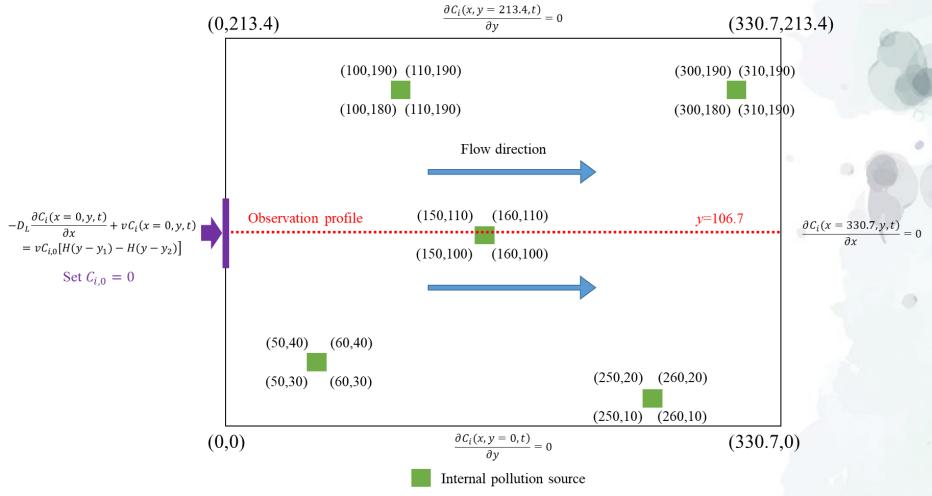
		PC	Έ		
	n=100	n=200	n=300	n=400	n=500
y=0	8.860E-06	7.960E-06	7.937E-06	7.937E-06	7.937E-06
y=10	1.018E-03	1.019E-03	1.019E-03	1.019E-03	1.019E-03
y=20	1.299E-01	1.299E-01	1.299E-01	1.299E-01	1.299E-01
y=30	1.320E+00	1.320E+00	1.320E+00	1.320E+00	1.320E+00
		TC	E		
	n=25	n=50	n=75	n=100	n=125
y=0	8.307E-04	8.062E-04	8.067E-04	8.068E-04	8.068E-04
y=10	1.969E-02	1.966E-02	1.966E-02	1.966E-02	1.966E-02
y=20	4.765E-01	4.764E-01	4.764E-01	4.764E-01	4.764E-01
y=30	2.005E+00	2.005E+00	2.005E+00	2.005E+00	2.005E+00
		DC	Έ		
	n=15	n=25	n=35	n=45	n=55
y=0	4.187E-03	4.024E-03	4.023E-03	4.023E-03	4.023E-03
y=10	6.031E-02	6.034E-02	6.034E-02	6.034E-02	6.034E-02
y=20	7.542E-01	7.544E-01	7.544E-01	7.544E-01	7.544E-01
y=30	2.093E+00	2.092E+00	2.092E+00	2.092E+00	2.092E+00
		V	С		
	n=10	n=18	n=26	n=34	n=42
y=0	1.637E-02	1.640E-02	1.639E-02	1.639E-02	1.639E-02
y=10	1.182E-01	1.182E-01	1.182E-01	1.182E-01	1.182E-01
y=20	8.033E-01	8.033E-01	8.033E-01	8.033E-01	8.033E-01
y=30	1.687E+00	1.687E+00	1.687E+00	1.687E+00	1.687E+00
		ET	Ή		
	n=6	n=12	n=18	n=24	n=30
y=0	6.951E-03	9.237E-03	9.241E-03	9.241E-03	9.241E-03
y=10	6.960E-02	6.826E-02	6.826E-02	6.826E-02	6.826E-02
y=20	4.442E-01	4.430E-01	4.430E-01	4.430E-01	4.430E-01
y=30	8.844E-01	8.871E-01	8.871E-01	8.871E-01	8.871E-01

Pe=10 *l*=200 *n*=300

As the degradation of species, the required l and n are lower

Convergence test

		PC	CE		
	l=100	1=200	1=300	1=400	1=500
x=0	1.062E-01	1.062E-01	1.062E-01	1.062E-01	1.062E-01
x=20	1.034E+00	1.034E+00	1.034E+00	1.034E+00	1.034E+00
x=40	6.143E-01	6.143E-01	6.143E-01	6.143E-01	6.143E-01
x=60	1.959E-01	1.959E-01	1.959E-01	1.959E-01	1.959E-01
x=80	4.696E-02	4.693E-02	4.693E-02	4.693E-02	4.693E-02
x=100	1.194E-02	1.158E-02	1.159E-02	1.159E-02	1.159E-02
TCE					
	1=25	1=50	1=75	1=100	1=125
x=0	7.650E-02	7.651E-02	7.651E-02	7.651E-02	7.651E-02
x=20	1.032E+00	1.032E+00	1.032E+00	1.032E+00	1.032E+00
x=40	1.617E+00	1.617E+00	1.617E+00	1.617E+00	1.617E+00
x=60	1.349E+00	1.349E+00	1.349E+00	1.349E+00	1.349E+00
x=80	8.515E-01	8.533E-01	8.531E-01	8.531E-01	8.531E-01
x=100	5.288E-01	5.085E-01	5.068E-01	5.067E-01	5.067E-01
		DO	CE		
	1=15	1=25	1=35	1=45	1=55
x=0	3.160E-02	3.159E-02	3.159E-02	3.159E-02	3.159E-02
x=20	5.489E-01	5.490E-01	5.490E-01	5.490E-01	5.490E-01
x=40	1.561E+00	1.561E+00	1.561E+00	1.561E+00	1.561E+00
x=60	2.215E+00	2.217E+00	2.217E+00	2.217E+00	2.217E+00
x=80	2.170E+00	2.151E+00	2.151E+00	2.151E+00	2.151E+00
x=100	1.496E+00	1.722E+00	1.722E+00	1.722E+00	1.722E+00
		V			
	1=8	l=14	1=20	1=26	1=32
x=0	8.924E-03	2.969E-03	2.969E-03	2.969E-03	2.969E-03
x=20	1.846E-01	6.812E-02	6.812E-02	6.812E-02	6.812E-02
x=40	7.694E-01	3.443E-01	3.443E-01	3.443E-01	3.443E-01
x=60	1.625E+00	8.511E-01	8.511E-01	8.511E-01	8.511E-01
x=80	2.335E+00	1.346E+00	1.346E+00	1.346E+00	1.346E+00
x=100	3.184E+00	1.566E+00	1.565E+00	1.565E+00	1.565E+00
	1		ГН		
	1=6	l=10	l=14	l=18	1=22
x=0	2.965E-03	2.969E-03	2.969E-03	2.969E-03	2.969E-03
x=20	6.818E-02	6.812E-02	6.812E-02	6.812E-02	6.812E-02
x=40	3.440E-01	3.443E-01	3.443E-01	3.443E-01	3.443E-01
x=60	8.465E-01	8.512E-01	8.511E-01	8.511E-01	8.511E-01
x=80	1.453E+00	1.347E+00	1.346E+00	1.346E+00	1.346E+00
100	4 50 45 01				1.5655.00

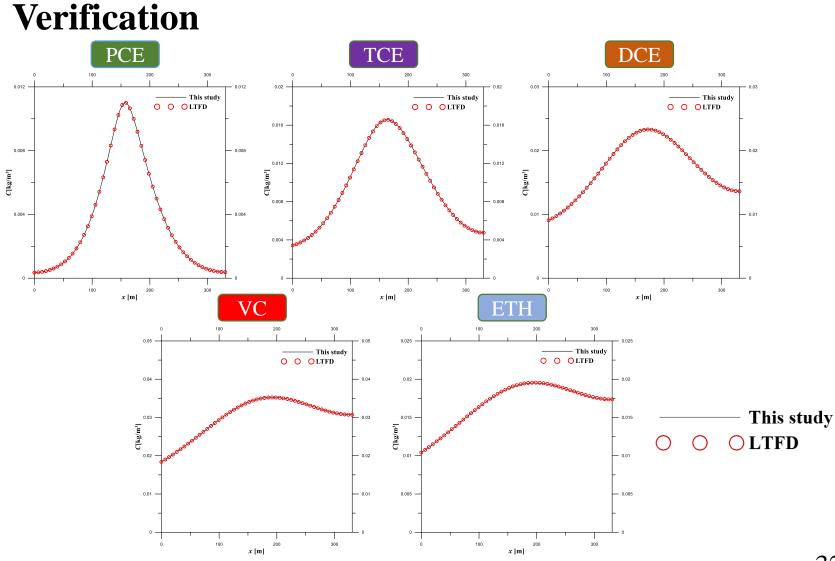

x=100 4.584E-01 1.585E+00 1.566E+00 1.565E+00 1.565E+00

		D	סור		
	200		CE 100	500	600
	n=200	n=300	n=400	n=500	n=600
y=0	3.262E-07	3.043E-07	3.044E-07	3.051E-07	3.053E-07
y=10	1.053E-04	1.053E-04	1.053E-04	1.053E-04	1.053E-04
y=20	3.755E-02	3.755E-02	3.755E-02	3.755E-02	3.755E-02
y=30	6.407E-01	6.407E-01	6.407E-01	6.407E-01	6.407E-01
		т	CE		
	n=50	n=100	n=150	n=200	n=250
y=0	9.193E-06	9.734E-06	9.727E-06	9.727E-06	9.727E-06
y=10	7.362E-04	7.362E-04	7.362E-04	7.362E-04	7.362E-04
y=20	5.963E-02	5.962E-02	5.962E-02	5.962E-02	5.962E-02
y=30	4.452E-01	4.452E-01	4.452E-01	4.452E-01	4.452E-01
		D	CE		
	n=30	n=40	n=50	n=60	n=70
y= 0	2.940E-05	2.989E-05	2.994E-05	2.995E-05	2.995E-05
y=10	1.215E-03	1.214E-03	1.214E-03	1.214E-03	1.214E-03
y=20	4.220E-02	4.220E-02	4.220E-02	4.220E-02	4.220E-02
y=30	1.915E-01	1.915E-01	1.915E-01	1.915E-01	1.915E-01
	1		С		
	n=10	n=20	n=30	n=40	n=50
y=0	3.097E-05	4.062E-05	4.093E-05	4.095E-05	4.095E-05
y=10	8.831E-04	8.930E-04	8.932E-04	8.932E-04	8.932E-04
y=20	1.695E-02	1.696E-02	1.696E-02	1.696E-02	1.696E-02
y=30	5.652E-02	5.648E-02	5.648E-02	5.648E-02	5.648E-02
		El	гн		
	n=10	n=15	n=20	n=25	n=30
y=0	2.301E-05	2.468E-05	2.409E-05	2.410E-05	2.410E-05
y=10	4.651E-04	4.659E-04	4.661E-04	4.661E-04	4.661E-04
y=20	6.875E-03	6.874E-03	6.874E-03	6.874E-03	6.874E-03
y=30	1.938E-02	1.938E-02	1.938E-02	1.938E-02	1.938E-02

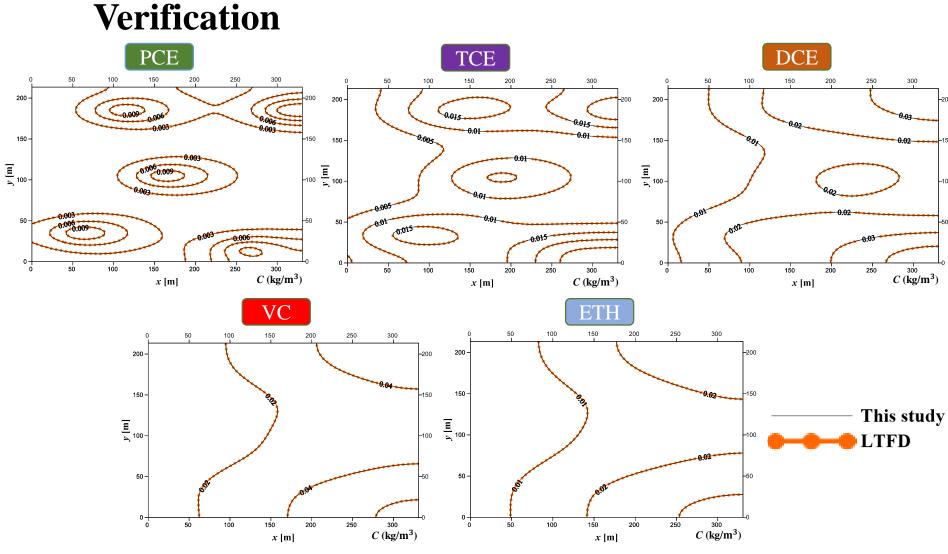
The greater the Pe, the greater the required l and n

 $\begin{array}{c} Pe=25\\ l=300 \quad n=500\\ Pe=10\\ l=200 \quad n=300\\ Pe=1\\ l=100 \quad n=250\\ \end{array}$

Verification

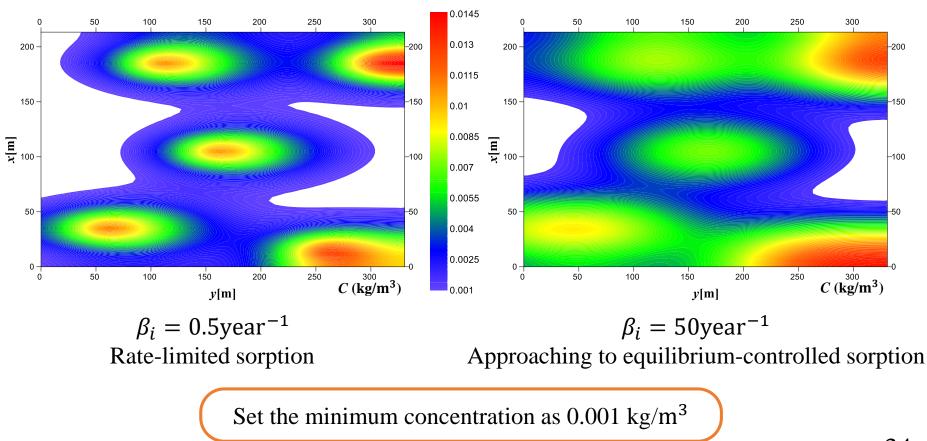


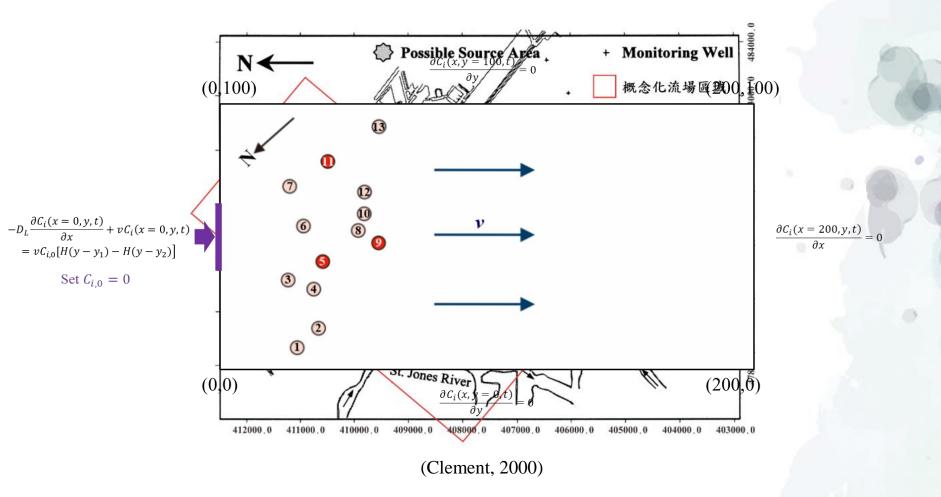
Verification


Contaminant parameters	РСЕ	TCE	DCE	VC	ETH
Distribution coefficient [kg m ⁻³]	0.784	0.239	0.230	0.0545	0.556
Sorption reaction rate constant [year ⁻¹]	0.5	0.5	0.5	0.5	0.5
Decay constant [year ⁻¹]	2.0	1.0	0.7	0.4	0

(Chen et al., 2019)

Source parameters	Value		eters Value Geological parameters		Geological parameters	Value
Mass release [kg]	1	0	Domain length [m]	330.7		
Release duration [year]	0~1		Domain width [m]	213.4		
Simulation time [year]	10		ne [year] 10 Velocity [m year ⁻¹]		10	
Source 1 domain [m]	x: 150~160	y: 100~110	Longitudinal dispersion coefficient [m ² year ⁻¹]	2000		
Source 2 domain [m]	x: 50~60	y: 30~40	Transverse dispersion coefficient [m ² year ⁻¹]	1000		
Source 3 domain [m]	x: 250~260	y: 10~20	Bulk dry density of the solid grain [kg m^{-3}]	1.6		
Source 4 domain [m]	x: 100~110	y: 180~190	Effective porosity [-]	0.2		
Source 5 domain [m]	x: 300~310	y: 100~110		31		


LTFD: Laplace Transform Finite Difference method (Moridis and Reddell, 1991)


LTFD: Laplace Transform Finite Difference method (Moridis and Reddell, 1991)

Comparison between equilibrium-controlled and ratelimited sorption

PCE

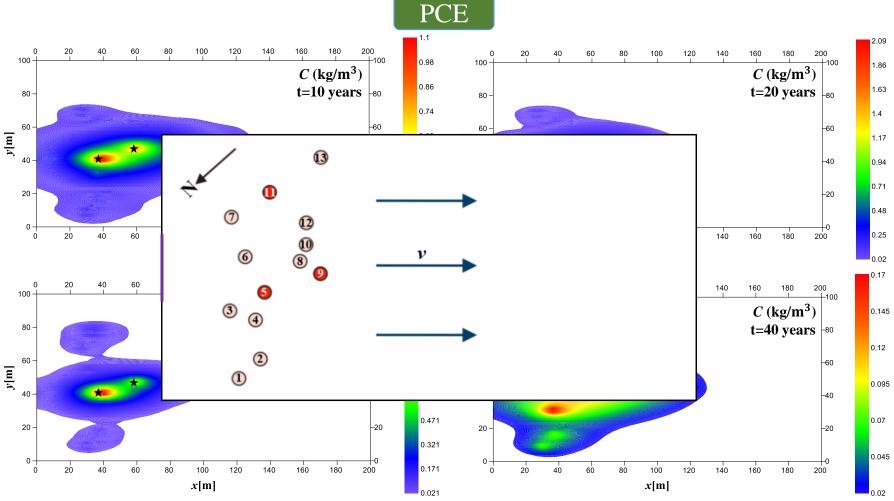
In situ problems - Dover Air Force Base

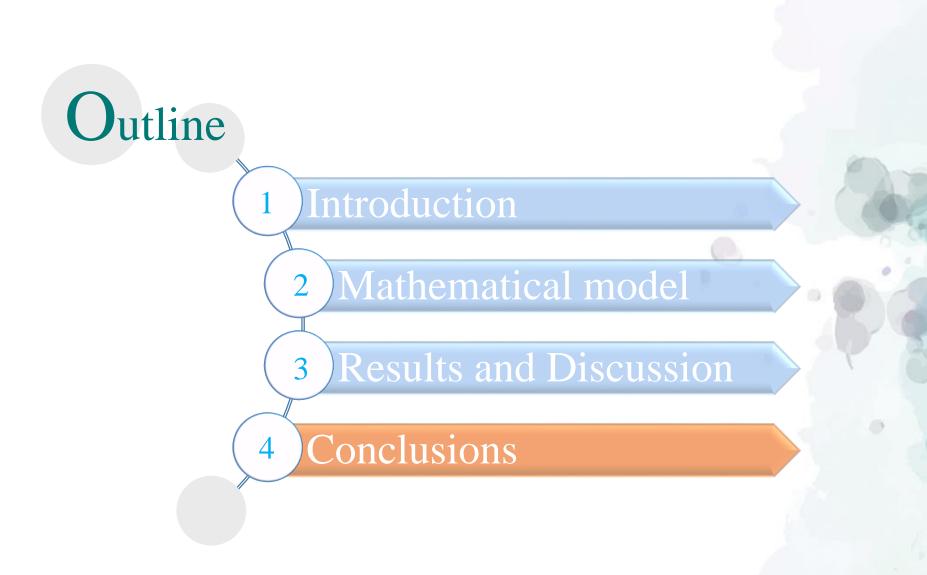
In situ problems - Dover Air Force Base

Contaminant parameters	РСЕ	TCE	DCE	VC	ETH
Distribution coefficient [kg m ⁻³]	0.062	0.041	-	-	-
Sorption reaction rate constant [year ⁻¹]	0.5	0.5	-	-	-
Decay constant [year ⁻¹]	0.1314	0.1261	-	-	-

Value
200
100
1.117
44.68
4.468
1.7
0.35

(Clement, 2000)


Source parameters	Value
Mass release [kg]	Shown in table
Release duration [year]	Shown in table
Simulation time [year]	10 / 20 / 30 / 40
Source domain [m]	Shown in figure


In situ problems - Dover Air Force Base

Source	Stress period#1		Stress period#2		Stress period#3		Stress period#4	
number	PCE	TCE	PCE	TCE	PCE	TCE	PCE	TCE
1	1	10	2	10	1	8	1	1
2	1	2	1	2	1	1	1	0
3	1	52	1	1	0	1	0	1
4	1	19	2	19	2	8	2	2
5	25	413	25	165	17	74	0	17
6	1	9	0	1	0	1	0	1
7	1	1	1	1	1	1	0	0
8	0	5	0	5	0	5	0	5
9	10	1	31	517	10	1	1	1
10	0	41	0	41	0	4	0	2
11	2	0	0	413	0	0	0	0
12	0	21	0	21	0	17	0	2
13	0	0	0	0	0	0	0	0

(Clement, 2000)

In situ problems - Dover Air Force Base

Conclusions

- Since most of contaminated remediation problems involved the internal pollution sources in the contaminated sites, this model can serve as the basis for preliminary assessment of remediation strategy.
- Most of current models considered equilibrium-controlled sorption, which may underestimate the concentration in the groundwater, the model in this study could considered rate-limited sorption to avoid the problems.

Thank you for your attention