Development of human health risk assessment software for a chlorinated solvent contaminated groundwater site

> Advisor : Prof. Jui-Sheng Chen Prof. Ching-Ping Liang Speaker : Cheng-Wen Chen Date : 2022/03/10

Introduction

Material and Methods

Results and discussion

1

Conclusions

Groundwater contaminant

Chlorinated solvents are common contaminants in groundwater.

USEPA: US Environmental Protection Agency Group A: Human carcinogen PCE: Tetrachloroethene TCE: Trichloroethylene DCE: Dichloroethylene VC: Vinyl chloride ETH: Ethene

Health risk assessment

- A process that estimates human health and environmental risks associated with chemicals of concern present in the environment.
- We can set the remediation goals and improvement methods of contaminated sites through the health risk assessment.

BW: Body weight (kg)

AT: Average lifetime (years)

6

RBCA Tool Kit

RBCA Tool Kit for Chemical Releases - 0 × RBCA Tool Kit for Chemical Releases 4 DBCA Evolution Q NEWS CONTACT ABOUT SERVICES SOFTWARE PUBLICATIONS CAREERS ENVIRONMENTAI Environmental site managers, regulatory authorities, and consultants around the world have increasingly turned to Risk-Based Corrective Action (RBCA) for the management of contaminated soil and groundwater. RBCA is a practical management approach that focuses explicitly on the protection of human health and the environment while promoting energy and cost-efficient remedies to allow limited resources to be targeted to the most hazardous sites. A keystone of the RBCA framework is the development of site-specific environmental cleanup criteria following a tiered risk evaluation approach. This approach is broadly applicable to chemical release sites located in different geographical settings and managed under various regulatory authorities.

BIOCHLOR

<u>MUltiSpecies</u> Transport Analytical Model (MUST)

MUS indiv	T_can use differentiation of the second seco	nt retardation fac UST	tor values among
	(Chen et., 2016)	(Chen et., 2019b)	MUST
PCE MUS TCE condi	T can use different tions. 20.1	ent types of inlet $7.6^{1.5}$	0.0005 source boundary 0.001
DCE	87.2	25.1	0.003
VC	103.3	62.1	0.01
ETH MUS	T can ₈₄ use co	nstant, _{125.3} ponen	tial decay, and
^d Department of Nursing, Fooyin University	rary time-depende	ents for source co	nditions.
https://www.s	ciencedirect.com/science/a	rticle/pii/S03091708210017	731 Open Assess

Graphical User Interface

Fortran programming language is often used to develop Transport model and

Objective

MUlti-Species Transport (MUST)

Development of Health risk assessment

Objective

• To develop a computer software for human health risk assessment of a chlorinated solvent contaminated groundwater site using the most advanced multispecies transport analytical model (MUST) equipped with a user-friendly graphical interface.

Material and Methods

Results and discussion

Constituents of concern

Mathematical model parameter -Source

🖳 MUST				– 🗆 ×
Prepare				
Constituents of Concern				
-Site Geometry	Constitutions of Concern Site Geomeny Mathematical model p	arameter Ompar Metho		1.1
-Mathematical model para	Source Plume	Source	Mathematical mo	del parameters
Output Method	Dimensions Boundary Source condit	ion Concentration	are divided into	Source and
2.	Dimensions		Plume. After click	ing the button,
	$\bigcirc 1D \bigcirc 2D \bigcirc 3D$		the button will	turn vellow.
	Model Size (Unit : (m))		showing the positi	on of this nage
	Domain Length Domain Width Domain Height			ton or this puge.
				40
	Input the dimension	on and Mode	el size.	200
	1			
			40	
			30	
			20	n
				Y
			0	
			Obs Well	Di = 100 (m/0 /
< >				

Step 3. Mathematical model parameter - Source

Step 3. Mathematical model parameter - Source

🖳 MUST				- 0 ×
Prepare Constituents of Concern				
Site Geometry Mathematical model paran Output Method 2.	Consistence of Commen Site Commence Mathematic Source Plume Dimensions Boundary Source <u>Number of sources</u> 0102030405 Next Source 1 Source 2 Source 3 Source 4 Y10(m) Z10(m) Y210(m) Z200(m)	cal model parameter Ourput Mether Source Source Function Concentration Choose the So Source 5 dimension.	Click Source.	
٢				19 10x + 100 pm/2 /

Step 3. Mathematical model parameter - Source

Prepare Constituents of Concern			<u>a</u>	\triangleright		(?)
- Site Geometry - Mathematical model para Output Method	Constituents of Concern Site Ge Source Plume Dimensions Boundary	sometry Mathematical mod Source	del parameter Output Method Source Source ndition Concentration	Click Source Fu	unction	
2.	 Constant Constant Exponential decay Arbitrary time-dependents 	C.	hoose the Sou	If click Expone urce Function. decay will appe	ential decay, of Source	ə 100
3.	Source decay PCE TCE DCE DCE		Input	the Source dec	ay.	
	VC				30 20 10	
<						Q,,,

Step 4. Mathematical model parameter - Plume

MUST						- 0 X
Prepare Constituents of Concern					\bigcirc	<u>A</u> 3 3
Constituents of Concern Site Geometry Mathematical model parame Output Method	1.	Image: source Plume Source Plume Transport pr Decay Constant (1) Occur in both K PCE K TCE K DCE K VC K ETH Species-specific Reta R PCE R DCE R VC R DCE R VC R ETH	sue Geometry Mathematica arameter	Cal model parameter Outp	Click Decay	r and Retardation.

Step 5. Output Method

Step 6. Result - Chart

Step 6. Result - Dataset

Step 6. Result - VTK

Conclusions

Now the Software is being tested and optimized.

Establishing a friendly interactive interface and visual display module will be more conducive to risk communication and risk management.

Future work

To make the software easier to use, compare the user interface with HYDROSCAPE and optimize the software interface.

HYDROSCAPE

		Pr 🕨 🛛			
troduction Domain	Source Transpo	rt/Geology N	Ap Options Outputs		
X-Length (m)	100	2	Discretization (X)	20	2
Y-Length (m)	25	?	Discretization (Y)	20	?
Z-Height (m)	10	2	Discretization (Z)	5	?
Time (yr)	4	?	Discretization (t)	10	?
Nodes	64	2			
	Years	O Days	Seconds Help		
	Years	O Days	oferred Units		
	(i) Years	Days Prefered C	rferred Units O Seconds Help Concentration Units		
	 Years Relative (C 	Pre O Days Prefered C /Cmax)	ferred Units O Seconds Help Concentration Units O Absolute (mg/L) Help		
	 Years Relative (C 	Pre Days Prefered (/Cmax)	offerred Units Seconds Help Concentration Units Absolute (mg/L) Help		
	 Years Relative (C Background 	Prefered C /Cmax)	Seconds Help Concentration Units Absolute (mg/L) Help (mg/L) 0.01	7	
	Years Relative (C Background	Prefered C /Cmax)	Seconds Help Concentration Units Absolute (mg/L) 0.01	7	
	Years Relative (C Background	Prefered C C/Cmax)	Seconds Help Concentration Units Absolute (mg/L) 0.01	7	
	Years Relative (C Background	Pref Days Prefered (//Cmax)	Seconds Help Concentration Units Absolute (mg/L) 0 01	7	
	Years Relative (C Background	Pre O Days Prefered C //Cmax) I Noise Level	Seconds Help	2	

Risk Assessment Software

	Constituent of	concerns	Geometry	Source	Transport Properties	Output Method
540	Model Config	guration				
		Variable	Value	Unit		
	X-Length	L	100	m	7	
	Y-Length	W	80	m	y Å	
	Z-Height	Н	80	m	L=100	m) W=80(m)
					(i) (i) (i) (i) (i) (i) (i) (i)	00000000000000000000000000000000000000

Thank you for your attention.