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Introduction

Hong et al., (2005) Predicting the rainfall-induced displacement is a challenge

Estimated PWP at grid
points from anisotropic
issues (Dong et al.,
2006)
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Flow Chart



Methods

Boreholes Comparison

14 boreholes
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Multi-Tank Model

𝒒𝟏 = 𝜶𝟏𝒙(𝑯𝟏(𝒕)−𝒉𝟏)

𝑰𝟏 = 𝜷𝟏𝒙 𝑯𝟏(𝒕)

𝒒𝟑𝟏 = 𝜶𝟑𝟏𝒙𝑯𝟑(𝒕)

𝑰𝟐 = 𝜷𝟐𝒙 𝑯𝟐(𝒕)

𝒒𝟐 = 𝜶𝟐𝒙(𝑯𝟐(𝒕)−𝒉𝟐)

q : discharge (mm)

I : infiltration (mm)

H : water tank or water storage (mm) 

h : height of side outlet(mm)

α : coefficient of side outlet

β : coefficient of side outlet

13 of 14 parameters are unknown

𝒒𝟑𝟐 = 𝜶𝟑𝟏𝒙(𝑯𝟑(𝒕)−𝒉𝟑𝟐)
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Multi-Tank Model

𝐻2(𝑡) = 𝐻2(𝑡𝑜) + 𝐼1 − 𝐼2 − 𝑞2(𝑡)

𝐻1(𝑡) = 𝐻1(𝑡𝑜) + 𝐴. 𝑅 − 𝐼1 − 𝑞1(𝑡)

𝐻3(𝑡) = 𝐻3(𝑡𝑜) + 𝐼2 − 𝑞31 𝑡 − 𝑞32(𝑡)

H1(t) : Changing height of water in Tank 1(mm)

H1(o) : Initial height of water in Tank 1 (mm)

R : Rainfall intensity (mm)

A : Adjustment number

I1 : infiltration in Tank 1 (mm)

q1 : Surface runoff discharge (mm)

H2(t) : Changing height of water in Tank 2 (mm)

H2(o) : Initial height of water in Tank 2 (mm)

I1 : infiltration from Tank 1 (mm)

q2: Base flow discharge (mm)

joint
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Multi-Tank Model

𝒒𝟏 = 𝜶𝟏𝒙(𝑯𝟏(𝒕)−𝒉𝟏)

𝑰𝟏 = 𝜷𝟏𝒙 𝑯𝟏(𝒕)

𝑰𝟐 = 𝜷𝟐𝒙 𝑯𝟐(𝒕)

𝒒𝟐 = 𝜶𝟐𝒙(𝑯𝟐(𝒕)−𝒉𝟐)

𝐻2(𝑡) = 𝐻2(𝑜) + 𝐼1 − 𝐼2 − 𝑞2(𝑡)

𝐻1(𝑡) = 𝐻1(𝑜) + 𝐴. 𝑅 − 𝐼1 − 𝑞1(𝑡)

𝐻3(𝑡) = 𝐻3(𝑜) + 𝐼2 − 𝑞31 𝑡 − 𝑞32(𝑡)

𝒒𝟑𝟏 = 𝜶𝟑𝟏𝒙𝑯𝟑(𝒕)

𝒒𝟑𝟐 = 𝜶𝟑𝟏𝒙(𝑯𝟑(𝒕)−𝒉𝟑𝟐)
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What we want to see from Multi-Tank Model

Hong et al., (2005)

Simulating the model:

1. Simulated groundwater fluctuation trend

2. Simulated maximum groundwater level

3. Simulated groundwater fluctuation slope



Orientation of Bedding Plane

• Large Scale → Yellow Zone Surface

(hundreds meters)

•Medium Scale → Key-bed within Boreholes

(tens meters)

• Small Scale → Outcrop Data 

(tens centimeters)
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Result



Orientation of Bedding Plane
Large Scale → Yellow Zone Surface
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Orientation of Bedding Plane
Large Scale → Yellow Zone Surface

Orientation:
N89.9oW / 16.6oS
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Orientation of Bedding Plane
Medium Scale → Key-bed within Boreholes

Boreholes (as key-bed)

BoreholesBH-1

BH-5

CGS Boreholes

Monitoring Wells

Cross sectionsA A’

A

A’

M-1

BM-1
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Overburden & Colluvium

Mudstone

SS (massive sandstone)

SS-SH 

(mainly composed of ss with sh occasionally)

a

b

c

Medium Scale → Key-bed within Boreholes
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Flaser Structure

Wavy Lamination Strc.

Lenticular Strc.

SS/SH

(Interbedded of ss and sh)

SH-SS

(mainly composed of sh with ss occasionally)

SH (shale)



???
???

Medium Scale → Key-bed within Boreholes

Orientation:
N87.6oE / 17.5oS

BH-4 BH-5 BH-3

a a

bb b

Source: https://www.uky.edu/

M-8
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Flaser Structure

Wavy Lamination Strc.

Lenticular Strc.



Orientation of Bedding Plane

Orientation of 

Bedding Plane

Orientation of Joints

17o

65o
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Small Scale → Outcrops Data

All Zone
N87oE/24oS



Orientation of Bedding Plane
Comparison of All Orientation

Yellow Zone 
Surface’s

Bottom of Key-
bed’s

All Outcrop’s

Strike N89.9oW N87.6oE N87oE

Dip 16.6oS 17.5oS 24oS

❖ Condition of geology in the Yellow Zone and Blue
Zone is relatively the same

❖ Some measurements of the outcrop’s orientation
could be controlled by disturbances (such as cross-
bedding, moving block, or creek feature)
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Geological Model

Boreholes (as key-bed)

BoreholesBH-1

BH-5

CGS Boreholes

Monitoring Wells

Cross sectionsA A’

A

A’

M-1

BM-1
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2D Cross-section of 
Geological Model

A

A’
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Location of Displacement

Boreholes (as key-bed)

BoreholesBH-1

BH-5

CGS Boreholes

Monitoring Wells

Cross-sections

Position of displacements

A A’

A

A’

M-1

BM-1

21



Vertical Displacement in 
BH-5

Vertical joint

Vertical displacement

2
2

.4
m

2
2

.5
8

m
0.06m

Dip angle ≈ 72o

Joint (CECI)

Mud layer

Vertical displacement

Bedding plane
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Vertical Displacement in M-2

Vertical joint

Vertical displacement

17.32

18.54

0.06m

Dip angle ≈ 87o

Joint (CECI)

Mud layer

Vertical displacement

Bedding plane
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Vertical Displacement in 
M-4

Vertical joint

Vertical displacement 0.06m

Dip angle ≈ 74o

Joint (CECI)

Mud layer

Vertical displacement

Bedding plane
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Movement Sense 
in Boreholes
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rock bridge (?)

A

A’

A

A’

Stable Zone



Monitoring Wells Location

Boreholes (as key-bed)

BoreholesBH-1

BH-5

CGS Boreholes

Monitoring Wells

Cross-sectionsA A’

A

A’

M-1

BM-1
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Overburden & Colluvium

Mudstone

SS (massive sandstone)

SS-SH 

(mainly composed of ss with sh occasionally)

The Aquifer Systems
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SS/SH

(Interbedded of ss and sh)

SH-SS

(mainly composed of sh with ss occasionally)

SH (shale)

Impermeable Layer (?)



Toe of slopeTop of slope

Mid of slope

x Top of slope

Mid of slope

Mid of slope

Mid of slope

Rainfall Data and Monitoring 
Wells’ Hydrograph

x : m.w. is too far

M1
M2

M3

M4
M6

M7

M8

M5
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Groundwater Fluctuation of 
M1 (Dec 2019 – Apr 2020)

x : m.w. is too far29
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Monitoring Wells Cross-Section
high permeable area (?)
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Simulated vs Factual 
Groundwater Fluctuation

A : 1000
H1 : 0
h1 : 3 mm
𝛼1 :  0.4
𝛽1 : 0.02

H2 : 0
h2 : 20 mm
𝛼2 :  0.7
𝛽2 : 0.355

H3 : 0
h31 : 0 mm
h32 : 2 mm
𝛼31 :  0.45
𝛼32 :  0.1
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Critical Simulated vs Factual 
Groundwater Fluctuation
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Conclusions

• Both orientation of the bottom of the key-bed and projected yellow zone

surface are relatively the same as factual data in the boreholes.

• Upper and middle slopes of NYCU could have moved; the type of slip surface

may be a step slip surface. However, the slope toe holds them and makes them

still stable.

• Trend of groundwater fluctuation of the multi-tank model shows a

corresponding good relation to the factual data of monitoring well.

• Bottom outlet will control significantly the increasing and decreasing of

groundwater level in the below and above tank, respectively.
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Future Works

• Finding the evidence of vertical movement in the field.

• Calibrating the simulated groundwater level to the different time

periods in M1

• Proposing the multi-tank model for other monitoring wells.

• Identifying the critical groundwater level based on multi-tank models

• Identifying the slope stability and slope failure probability
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