

The Failure Probability of a Dip Slope: The Aspects of Geological and Hydro-Geotechnical Uncertainty

Geological Condition Possibility Of Rock Mass Movement Below Main Campus Hydrogeological Condition and Multi-Tank Model of M1

> Presenter: Alvian Rizky Yanuardian 楊安庭 109684601

> > Advisor: Prof. Jia-Jyun Dong

April 15, 2022

1

Introduction

What do we face in NYCU ???

Opened joints

Slightly-moderately weathered rock

Hong *et al.,* (2005)

Introduction

Estimated PWP at grid points from anisotropic (Dong et al., issues 2006)

Predicting the rainfall-induced displacement is a challenge

14

12

NYCU Map

Flow Chart

Methods

Boreholes Comparison

Multi-Tank Model

q : discharge (mm)

I : infiltration (mm)

H : water tank or water storage (mm)

h : height of side outlet(mm)

 α : coefficient of side outlet

 β : coefficient of side outlet

13 of 14 parameters are unknown

Multi-Tank Model

- $H_{1(t)}$: Changing height of water in Tank 1(mm) $H_{1(o)}$: Initial height of water in Tank 1 (mm)
- R : Rainfall intensity (mm)
- A : Adjustment number
- I₁ : infiltration in Tank 1 (mm)
- q₁: Surface runoff discharge (mm)
- H_{2(t)} : Changing height of water in Tank 2 (mm)
- H_{2(o)} : Initial height of water in Tank 2 (mm)
- I₁ : infiltration from Tank 1 (mm)
- q₂: Base flow discharge (mm)

$$H_{1(t)} = H_{1(to)} + A.R - I_1 - q_{1(t)}$$

$$H_{2(t)} = H_{2(to)} + I_1 - I_2 - q_{2(t)}$$

$$H_{3(t)} = H_{3(to)} + I_2 - q_{31(t)} - q_{32(t)}$$
joint

6-1

Multi-Tank Model

10

What we want to see from Multi-Tank Model

Simulating the model:

- 1. Simulated groundwater fluctuation trend
- 2. Simulated maximum groundwater level
- 3. Simulated groundwater fluctuation slope

- Large Scale → Yellow Zone Surface (hundreds meters)
- Medium Scale → Key-bed within Boreholes (tens meters)
- Small Scale \rightarrow Outcrop Data

(tens centimeters)

Large Scale \rightarrow Yellow Zone Surface

Large Scale \rightarrow Yellow Zone Surface

Medium Scale \rightarrow Key-bed within Boreholes

Boreholes (as key-bed)

Boreholes

CGS Boreholes

Monitoring Wells

Cross sections

Medium Scale \rightarrow Key-bed within Boreholes

Small Scale \rightarrow Outcrops Data

Ν

W

Bottom of Key-bec

Orientation of Bedding Plane

Comparison of All Orientation

	Yellow Zone Surface's	Bottom of Key- bed's	All Outcrop's
Strike	N89.9°W	N87.6°E	N87°E
Dip	16.6°S	17.5°S	24°S

Some measurements of the outcrop's orientation could be controlled by disturbances (such as crossbedding, moving block, or creek feature)

Geological Model

Boreholes (as key-bed)

¹ Boreholes

A

- CGS Boreholes
- Monitoring Wells
- Cross sections

Location of Displacement

Boreholes (as key-bed)

Boreholes

⁻¹ CGS Boreholes

Monitoring Wells

- **Cross-sections**
- Position of displacements

Vertical Displacement in BH-5

Mud layer

Vertical displacement

0.06m

Vertical Displacement in

BM-

RH

24

Monitoring Wells Location

Boreholes (as key-bed) BH-5

Boreholes

A

- **CGS Boreholes**

A'

- **Monitoring Wells**
 - **Cross-sections**

 -50
 -50
 -50
 -50
 -50
 -50
 0

 Top of slope
 Toe of slope
 Mid of slope
 Top of slope
 Top of slope
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60
 -60

-45

x : m.w. is too far

20

應用地質研究所 Graduate Institute of Applied Geology

Groundwater Fluctuation of M1 (Dec 2019 – Apr 2020)

x : m.w. is too far

Monitoring Wells Cross-Section

⁻⁻⁻Groundwater Level in Monitoring Well (M1) --- Rainfall (mm)

Conclusions

- Both orientation of the bottom of the key-bed and projected yellow zone surface are relatively the same as factual data in the boreholes.
- Upper and middle slopes of NYCU could have moved; the type of slip surface may be a <u>step slip surface</u>. However, the slope toe holds them and makes them still stable.
- Trend of groundwater fluctuation of the multi-tank model shows a corresponding good relation to the factual data of monitoring well.
- Bottom outlet will control significantly the increasing and decreasing of groundwater level in the below and above tank, respectively.

Future Works

- Finding the evidence of vertical movement in the field.
- Calibrating the simulated groundwater level to the different time periods in M1
- Proposing the multi-tank model for other monitoring wells.
- Identifying the critical groundwater level based on multi-tank models
- Identifying the slope stability and slope failure probability

- Dong, J.J., Tzeng, J.H., Wu, P.K., & Lin, M.L.(2006).Effects of anisotropic permeability on stabilization and pore water pressure distribution of poorly cemented stratifiedrock slopes. International journal for numerical and analytical methods in geomechanics, 30(15), 1579-1600.
- Hong, Y., Hiura, H., Shino, K., Sassa, K., & Fukuoka, H. (2005). Quantitative assessment on the influence of heavy rainfall on the crystalline schist landslide by monitoring systemcase study on Zentoku landslide, Japan. Landslides, 2(1), 31-41.

THANK YOU FOR YOUR ATTENTION