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Purpose

21.5°))

(The slope angle

al.,, 2011)

Orthoclinal slope:
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Anaclinal slope: (Grell
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Numerical simulation

Cataclinal slope:

a < 30°

Model setup

Geology Material Boundary
condition properties condition

Initial condition

Check results unsatisfactory

Perform alteration

Change parameter (a & 0)

Result and discussion




Material properties

Permeability ratio

10 i, . ..
, — » 1so-JRMC model (PLAXIS BV., 2014): It combines the jointed rock
T model and the Mohr-Coulomb model.
A T=cC +o0,*xtang
Weak plane  The thin bedded considered as shear
a transversely isotropic medium. - stress @
. . . . Y1
(x-direction = y-direction)
*__JE
Parameters used in the PLAXIS model. ~ ﬂi/'
Yunsar (KN/m?) 20 i
Ysar (kN/m) 23 .
Shear modulus (kPa) 1.9 x 10° c v normal -
Poisson's ratio 0.3 g T ~01_stress -
Cohesion of weakly cemented rock (kPa) 100 3 2 1
Friction angle of weakly cemented rock (°) 30
Cohesion on weak plane (kPa) 10
Friction angle on weak plane (°) 20
Permeability coefficient parallel to bedding planes (cm/s) 6 x 10°°
Permeability coefficient perpendicular to bedding planes (cm/s) 6 x 1077




Boundary condition

Hydraulic Boundary

Mechanical Boundary
. Precipitation
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Isosurface under initial
groundwater table (m)

Initial condition («=0; 9 =215

(6 = dip angle of bedding plane) (a = dip direction of bedding plane)
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I-»\(m) Zones in a slope separated by isosurfaces below the initial groundwater table.
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Compare with different 6

(6 = dip angle of bedding plane) (a = dip direction of bedding plane) j -
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1.6T

Normalized time lapse(T=56h)

» Under the same rainfall condition, the result of 8 = 60° showed greater rise of the average groundwater
table and took shorter time to reach the highest groundwater table than the slope with & = 21.5°.
» The result of 8 = 60° showed larger increases in the pressure head at different depths.
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Compare with different ¢ & 6

(6 = dip angle of bedding plane) (a = dip direction of bedding plane)

50 1

» For 6 = 21.5°, the greater «, the higher value of average groundwater

E table. But for 8 = 60°, it didn’t indicate such a trend.
g 2 Z
2530
TE 1 0=0" ---a=30" =45’ | = For those beddings planes having steep dip angle, the
20 = =60 —ou=90 =120" | = . . . . .o .
9% —oiis —aise —ase . 2 [ direction of bedding plane have no significance influence on
z a 10 4 : Rainfall L1 the avera ht of groundwater table.
O EO 1 - L m— ' T ——r —t 45 f —;—’ :———;;¥ : — ; 7& %
a ° o= a * o A A
40 + ° = o
~ 35 ’ ’
A 2
“5 § : ~ % 9 Highest groundwater table during and after rainfall
@ 2 : —60° & & 50 & +0=90" 0=60" =0=45 ©0=30" -*0=21.5 +0=10
= 30 - \ 0=60 - & 20 4
-gb : i = 9 - Initial groundwater table before rainfall
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g“é E D —a=135 —a=150" —a=180 E But for the steeply bedding plane, the average height of
= el N . . . .
25107 g  ~Randl groundwater table was still higher then gentle bedding plane.
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(6 = dip angle of bedding plane) (a = dip direction of bedding plane) { -

Normalized time lapse to reach
the maximum pressure head

Normalized time lapse to reach
the maximum pressure head

< Zong | + ce@u= « Zone2 =A== Zone3 =<ll= Zonc4

—_— o .
PN e G oo » For® = 21.5° it showed that deeper zones took a longer time to
ST 1 0=21.5" reach the maximum pressure head. For 8 = 60°, it has same trend.

This was explained by the pore pressure diffusion process.

== e » For ® = 21.5°, anaclinal slopes showed shorter time to reach
the maximum pressure head at deeper zone.

longer shorter 3 For @ = 60°, orthoclinal slopes showed shorter time to reach

the maximum pressure head at deeper zone.

or I 0=60" ‘

The steeply bedding plane took shorter time to reach the
maximum pressure head then gentle bedding plane.
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a()
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Summary for different ¢ & 0

(6 = dip angle of bedding plane) (a = dip direction of bedding plane)

Fixa =20

The dip angle of bedding planes 21.5° 60°

Time to reach highest groundwater table Longer Shorter

Rise of groundwater table Lower Higher

Increase of pressure head at a certain position Smaller Larger
Fix 8 = 60°

The dip direction of bedding planes Cataclinal slopes | Orthoclinal slopes | Anaclinal slopes

(a < 30°) (30° < a < 150°) (a > 150°)

The average of groundwater table Roughly same

Time to reach maximum pressure head at a certain position | Longer Shorter Longer

(e.g. Zone 4 at depth of 9-12m)
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Slope stability

» The factor of safety is based on the shear
strength reduction technique.

» The essence of shear strength reduction
technique is the reduction of the soll
strength parameters until the soil fails.
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Safety factor

Results for slope stability

(6 = dip angle of bedding plane) (a = dip direction of bedding plane)

Same trend

» The rise of the groundwater table or pore pressure caused a

Initial groundwater table before rainfall reduction in the factor of safety.
--0=21.5 “=0=60
Highest groundwater table during and after rainfall

~e-0=21.5 *-0=60

6 = 21.5°(gentle bedding plane)

» The greater angle of a, the greater factor of safety were

2.5
shown.

ST L o 8 = 60°(steeply bedding plane)

o » Because it has higher groundwater table and more increase of
1 pore pressure, causing the smaller safety factor then the gentle

- bedding plane.

_ » The smaller factors of safety appeared at &« = 0° & 180°,

0 30 60 % 120 150 180 the failure mode may be related to toppling.

a() (Nichol et al., 2002)

TOPPLING

18






Discussions

(6 = dip angle of bedding plane) (a = dip direction of bedding plane)

The unfavorable bedding plane-slope conditions for slope stability:

(a) (b)
0 = slope angle; a = 0° 0 < slope angle; a = 0°
(cataclinal dip slope) (cataclinal under-dip slope)

(daylight condition)

0) (d)
0 >slope 'c(mgle; a=0° 0 > slope angle; o« = 180°

(cataclinal over-dip slope) (anaclinal slope)
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Discussions

The unfavorable bedding plane-slope conditions for slope stability:

-@- Initial groundwater table before rainfall

-~@- Highest groundwater table during and after rainfall

Safety factor

ra) o (b)

0 =slope angle; a =0 0 <slope angle; a = 0°

(cataclinal dip slope) (cataclinal under-dip slope)
(daylight condition)

0 10 20 = 30
0 ()

» Where the joint plane is exposed in the slope face, the
plane is regarded to “daylight”, a condition may lead to
rock mass sliding.

» The daylight condition might exist in natural slopes

) due to the incision of rivers; however, weathering will

¢ @ eventually weaken the strength of weak planes, and

0 >slope angle; o« = 0° 0 > slope angle; a = 180° Y . g P ’

. . . the slope fails along the daylight weak planes. 22

(cataclinal over-dip slope) (anaclinal slope)




Discussions

(6 = dip angle of bedding plane) (a = dip direction of bedding plane)

The unfavorable bedding plane-slope conditions for slope stability:

Incremental displacements (1073 m)
40
€ 36.67
I 3333
—=x |3
26.67
12333
D 20
. | 16.67
13.33
10
6.67
333
0
(a)

Therefore, the two conditions in (a) and (b) may be
considered more unfavorable than the two conditions
in (c) and (d).

%

(a)
0 = slope angle

(cataclinal slope)

&

(©)
0 >slope angle

(cataclinal slope)

The failure surfaces of the two conditions (c) and (d)
are generally deeper then (a) and (b).

(b)

Incremental displacements (10’3 m)

Incremental displacements (10* m)
1

3
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1.08
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Conclusions

a=0; 0 =60°
The three-dimensional analysis enables the comparison of the factors of safety among o3 A&
cataclinal, orthoclinal, and anaclinal slopes during rainfall and also the comparison of different [l LS
dip angle of bedding plane. ;g 0 é
® @« =
- T >
During and after rainfall, a slope with steeply dipping bedding planes exhibits a greater Normalized time lapse S
rise of the groundwater table and greater increase of pore water pressure, resulting in a Initial groundwater table before rainfall
N - o : -0=21.5 —*0=60
larger reduction in the factor of safety than that with gently dipping bedding planes. Higlhest groumdwsier table dhriagranilafier reffl
T -0=21.5 -x0=60
| h
g
9
&
z
The unfavorable bedding plane-slope conditions for slope stability § o
05 75( ataclinal Orthoclinal Anaclinal
[ Slope | Slope l Slope J
0 L B S B
/ 0 30 60 90 120 150 180

a ()

Note that in addition to the orientation of bedding planes, the calculated values were affected l l
by the rainfall condition, strength characteristics, hydraulic characteristics and slope geometry
as well. \/ /
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Thanks you for your attention!



