LOW TEMPERATURE GEOTHERMAL ENERGY: HEAT EXCHANGE SIMULATION IN AQUIFERS THROUGH MODFLOW/MT3DMS CODES

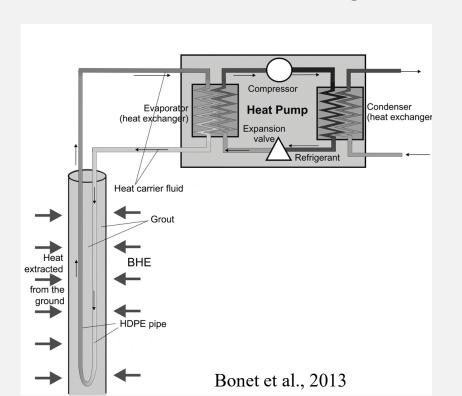
Luca Alberti, Adriana Angelotti, Matteo Antelmi, Ivana La Licata, Cesare Legrenzi

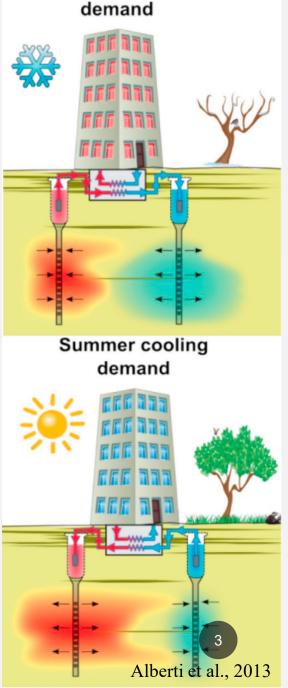
110624011 王新博 Hsin-Po Wang

Advisor: Pf. 倪春發 Chuen-Fa Ni

OUTLINE

- Introduction
- Methodology
- Result
- Conclusions
- Future works


INTRODUCTION



GROUND-SOURCE HEAT PUMP (GSHP)

 GSHP: cleanest & energy efficient in heating and cooling systems

BHE : Borehole Heat Exchanger

Winter heating

TRNSYS & MODFLOW

TRNSYS

 Be able to simulate the heat transfer process between the BHE and the ground.

 Doesn't consider the effects of a groundwater flow.

MODFLOW

 MODFLOW can be used to solve the groundwater flow equation.

 MT3DMS is not explicitly designed to simulate heat transport

GOAL

 MODFLOW/MT3DMS to simulate a full BHE having a U-pipe geometry without groundwater flow.

 Difference between MODFLOW/MT3D and TRNSYS in case of groundwater flow.

METHODOLOGY

MODFLOW/MT3DMS

 MT3DMS: simulation of <u>advection</u>, <u>dispersion</u>, and <u>chemical reactions</u> of contaminants in groundwater systems

$$\left(1 + \frac{\rho_b K_d}{\theta}\right) \frac{\partial \left(\theta C^k\right)}{\partial t} = \underbrace{\frac{\partial}{\partial x_i} \left(\theta D_{ij} \frac{\partial C^k}{\partial x_j}\right) \left(\frac{\partial}{\partial x_i} \left(\theta v_i C^k\right)\right) + \underbrace{q_s C_s^k}_{s}}_{\text{source}}$$

MODFLOW/MT3DMS

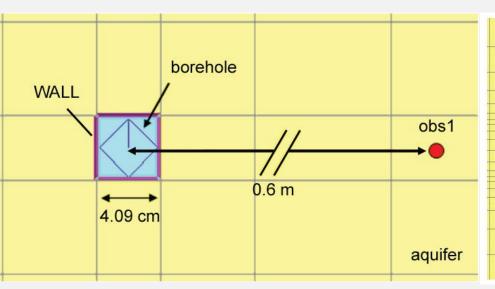
$$\left[1 + \frac{\rho_b K_d}{\theta}\right] \frac{\partial (\theta C^k)}{\partial t} = \frac{\partial}{\partial x_i} \left(\theta D_{ij} \frac{\partial C^k}{\partial x_j}\right) + \frac{\partial}{\partial x_i} \left(\theta v_i C^k\right) + q_s C_s^k$$

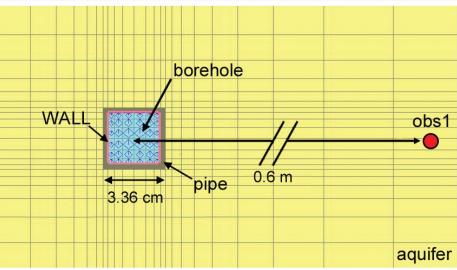
$$\left[1 + \frac{\rho_b K_d}{\theta}\right] \frac{\partial (\theta T)}{\partial t} = \frac{\partial}{\partial x} \left(\theta \left[D^* + D_{ij}\right] \frac{\partial T}{\partial x_j}\right) - \frac{\partial}{\partial x_i} \left(\theta v_i T\right) + q_s T_s$$

CASE STUDY

- The case: 100 m polyethylene U-pipe, 2 cm inner diameter, 6 cm pipe-to-pipe centers distance.
- The U-pipe is located into a 200 m saturated sandy aquifer, assumed homogeneous.
- The aquifer has an initial uniform temperature of 11.8°C.

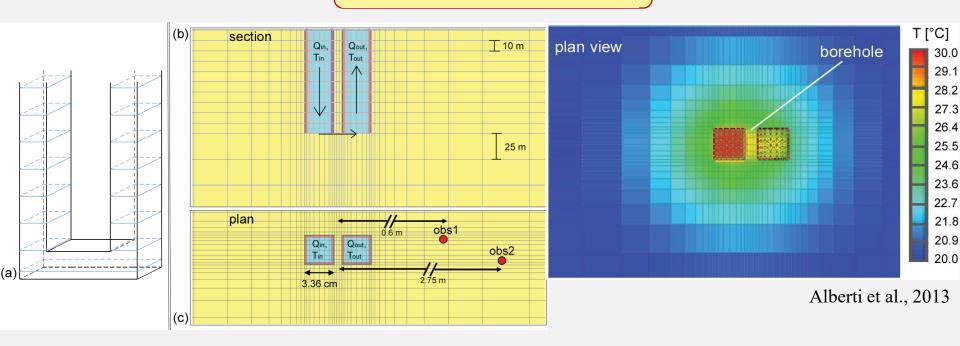
	First winter (1 st Jan – 15 th Apr)	First pause (16 th Apr – 31 st May)	Summer (1 st Jun – 31 st Aug)	Second pause (1 st Sep – 15 th Oct)	Second winter (16 th Oct – 31 st Dec)
Time [d]	105	46	92	45	77
T _{in} [°C]	6	-	30	-	6
Mass rate [kg/h]	1000	0	1000	0	1000


MODEL IN MODFLOW/MT3DMS

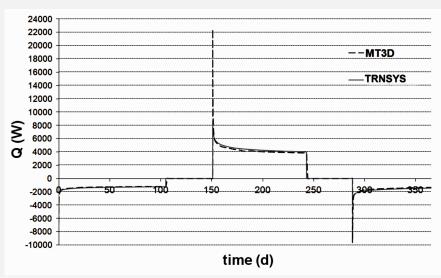

 Constant Head (CH = 100cm) and Constant Temperature (T = 11.8°C)

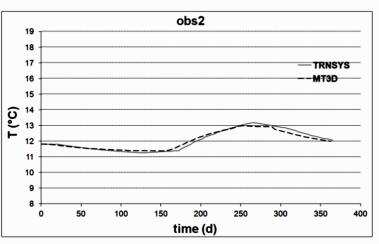
Descending branch of the U pipe

Thermal resistance of the plastic pipe

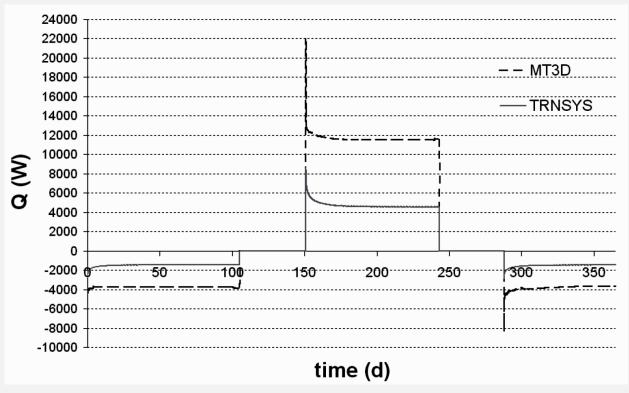


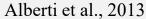
MODEL IN MODFLOW/MT3DMS




RESULT

SIMULATIONS WITHOUT GROUNDWATER FLOW





SIMULATIONS WITH GROUNDWATER FLOW

CONCLUSIONS

CONCLUSIONS

 It is a good agreement between the results of the two software, In the absence of groundwater flow.

 MODFLOW/MT3DMS looks to be more suitable to represent cases where groundwater flow can't be neglected.

FUTURE WORKS

FUTURE WORKS

 Using GemPy to build a geological model with known borehole data.

Combining MODFLOW with geological models.

THANK YOU FOR YOUR ATTENTION

