

Shale transformations and physical properties—Implications for seismic expression of mobile shales

Soto, J. I., Hudec, M. R., Mondol, N. H., & Heidari, M. (2021). Shale transformations and physical properties— Implications for seismic expression of mobile shales. *Earth-Science Reviews*, 220, 103746

> Presenter: Hassan Aleem Advisor: Prof. Maryline Le Beon Date: 2022-05-13

Slide 3

Motivation and Goal

Slide 6 Workflow

Slide 10

Physical

Properties

Slide 4

Introduction

Slide 7

Shale Transformations

Slide 17

Seismic Expression

Conclusions

Slide 20

US Future Work

Slide 21

Motivation and Goal

- o Fluid overpressure in Shale?
- Physical properties and transformations in Shale?
- Seismic expression of Mobile Shale?

 The goal is to understand sources of fluids and shale transformations during burial and how it affects seismic imaging of mobile shales

Introduction

Fluid overpressure in Shale?

- Muds and clays deposit having water as their constituent and later due to compaction, the water cannot escape restoring hydrostatic pressure
- Low permeability retards fluid escape both vertically and horizontally

Introduction

Workflow

Shale Transformations

Oil Cracking

- Oil changes to methane at depths around 3-5 km
- 140-200 MPa pressure rise (TM)

Hansom and Lee, 2005

Shale Transformations

Shale Transformations

Clay Diagenesis

> Temperature and time relationship for smectite to illite transformation

Porosity

- Top of overpressure: Porosity gently decrease (Smectite-Illite)
- Onset of overpressure: A steep increase of porosity (Thermogenic Methane)
- Methane has more influence in rising the fluid overpressure in shale compared to water

0.0

Density

Effects of water and methane on the density of mobile shales

Density:

Normally compacted shale> undercompacted shale> Mobile Shale

Sonic velocities of mobile shales

The velocity at which sound waves travel in a particular medium

- Density controls Sonic Velocity
- Most of data:

At 2 Km: Illitization drops V_p At 3.5 Km: MCTZ drops V_p

Shale velocities in individual wells

Acoustic Impedance (AI)

- Al= Density × Sonic Velocity
- Increase in sonic velocity increases AI

Reflection Coefficient (RC)

- The proportion of seismic wave amplitude reflected wave (RV) from an interface to the incident wave (IV) amplitude. If 10% of the amplitude is returned, then the reflection coefficient is 0.10
- +ve RC : RV polarity same as IV, -ve RC: RV polarity opposite to IV

 AI_1 = Impedance of upper layer AI_2 = Impedance of lower layer

Seismic Expressions

Near-surface mud volcanoes

- Seabed: slight negative reflectivity
- Carbonate: very strong polarity (+ve) than other rock types
- Fluids (Methane and water) will make the reflectivity of shale, very weak (-ve)

Seismic Expressions

Fold Cored mobile shale

- Mobile shale thickens towards the core
- Fluids and gases go across the unconformity
- In other places, no clear negative... gradational changes in overpressure

Seismic Expressions

Mobile shales in depth

- Negative reflectivity at top of shale....Methane rich fluids
- A positive reflection makes sense for overpressured, mobile shale above normally pressured sandstones and shales

East Breaks fold belt

Conclusions

- Mobile shales represent the highly overpressured state of shales that pierce through its overlying roof of rocks in the earth crust.
- Illitization expels water and oil cracking generates methane in the depths around 1-2 Km and 2-5 Km, respectively.
- Fluid-gas mixtures characterize the shale with lower sonic velocity, density and acoustic impedance that tends to form criteria for its recognition on the seismic images.
- Careful evaluation of shale composition, thermal and burial histories and advanced seismic processing are prerequisite for a better understanding of mobile shales.

Future Work

Courtesy of Chen Kai-Fong

Any Questions?

THANK YOU