

Yanchao

2

presenter : Chuan Ding Advisor : Prof. Dong J.J.

2022/05/27

WHY?

- Creeping Active Fault Geohazard
- Metro Transits (Freeway, MRT)
- Still Unknown under Chianan Alluvial plain

CKLF = Chekualin fault

Monitoring data- short-term deformation rate

Distance(m)

THE GOAL OF THIS STUDY

- Using Extensive detail site investigation to built complete time spectrum of active line/zone.
- Geological model were proposed to discuss temporal and spatial variation
- How a engineering project can earlier identify the possible active surface deformation zone according to this case history.

BACK GROUND GEOLOGICAL SETTING

- Mudstone
 (Gt)
- Fold and thrust belt
- Mud
 volcanoes

CKLF = Chekualin fault

OUTCROPS FAULT ZONE FEATURES

- Widespread Shear Zone in hanging wall(>130m)
- Branch Faults
- Steeply hanging wall

BEDROCK THRUST ON OLDER ALLUVIUM(20~40KA)

STUDY METHOD

- Faut trace mapping
- Stratigraphic correlation, Boreholes
 - Bedding change, shear plane
 - ¹⁴C, nannofossil and foraminifera
- Active line/zone
 - Long-term crustal uplift rate
 - Short-term crustal uplift rate

			1	
Position	Location	Certain Identity and Existence	Questionable Identity or Existence	
Within zone of confidence	Observable			High
		Solid line	Solid line+ ?	n l
May not be within zone of confidence	Observable	B — — — — — — — — — — — — — — — — — — —	b — — — — – Long dash line+ ?	drees c
	Inferred between outcrops or beneath rubble or vegetation	C Short dash line	C??? Short dash line+ ???	of precisio
	Concealed beneath overlying map unit, ice, or water	D Dot	d	⊃ Low

U.S. Geological Survey Open-File Report 02-370, 2002, p36-37

Geomorphological setting -strongly eroded environment

Layer A, Hanging wall

- Fault gauge
- Fault breccia

Thickness>4m Ductile deformation

Layer A, Hanging wall

- BH-13_40.20~40.30m
 - Fault gauge
 - Fault breccia
 - Web Structure
- Multiple shearing events
- Low angle cut by high angle 18

SLICKENSIDE

Orientation shows high angle thrust mainly

細拍AH-2(28-32)(5)

細拍AH-2(36-40)(7)

Passchier and Trouw,2005¹⁹

B-B'

(1:1)

CKLF = Chekualin fault

(1:1)

N Distance (m) 180 60 120 240 0 35 **BH-13** BH-3 **BH-12** 30 BH-15 (24.67m) (24.67m) BH-16 (23.87m)BH-9 -11 BH (21.73m) F 25 0m) (20.39m) (19.10m) 685~90 20 u turi Unimaletati 030 055 070 V-0 0-10 Ve. 10-05 D -0 0-5 15 Ve. 12-010-15 A -AL UNIL -00~5 00-5 10 Elevation (m) P60 -00~5 280 2 65 5 С -00~5 Q70~80 × -020-30 -070-80 -00 ------00~5 0 100-5 P70~80 NE -5 -00-5 970 -O 0~5 P75 · #= -0 10 0 10~20 -0 0-10 **----**-0 10 -10 B 045~55 040~20 040~50 040~50 -70-75 980 -0 5~10 9 50 9 70 9 80 -15 \$65-70 -0 5~10 50~60 Offset ~20m E -0 5~10 -0 5-10 -20 -05 \$ 50-70 80-85 070~80 0 60~65 -25 -0 0~10 0 50-55 -30-60~70 970 Q55~65 050~60 Α Ē \$50-60 075~85 A -35 Q45~50 Q40~50 015~20 020-30 0 15-20 -40 Q 80~90 015~20 075~85 50 -45 015~20 Dense shear zone Thrust fault -50 SHE IN 90 60~70 60 70~75 Topographic cross section pedo. Hat-Hater Court Operation on \$52 Nanno fossils zone -55 960 E. -60 15.35-bi.45m/ferm 7149-7946 oxfyritr **Densely Shearing Zone** -65 CKLF -70-980 Bedding plane (dip angle) 970 Shear plane (dip angle) Shear dip angle O Bedding dip angle

CKLF = Chekualin fault

HOLOCENE DEPOSITS (TAINAN FORMATION)

Deformed Holocene strata Shear band

BH-3_31.75~32.00m Layer B, shear plane 85~90°

BH-13_3.35~3.65m Layer **D shear plane** 80°

AH-7_10.00-10.25m · Layer C shear plane

Eustatic Sea level Elevation

Sample Number	Sample Material	Borehole Elevation (m)	Sample Depth (m)	Sample Elevation (m)	Paleo Sea Level Elevation(m)	Paleo Environmental Depth(m)	Carbon-14 Dating (Calibrated yr BP)	Vertical Displacement(m)	Uplift rate(mm/yr)
BH-3_14.40m	Shell	24.67	14.40	10.27	-0.1±3.1	2~ -2	7030 ± 95	10.42 ± 5.15	1.48 ± 0.73
BH-3_26.05m	Shell	24.67	26.05	-1.38	-3.7±4.0	2~ -2	7705 ± 60	2.40 ± 6.08	0.31 ±0.79
BH-3_33.50m	Shell& Foraminifera	24.67	33.50	-8.83	-20.6±7.2	2~ -2	9288 ± 83	11.83 ±9.23	1.27 ±0.99
BH-7_30.25m	Foraminifera	24.56	30.25	-5.69	-38.0±9.5	2~ -2	10310 ± 85	32.38 ±11.54	3.14 ±1.12
BH-9_15.85m	Shell	19.89	15.85	4.04	0.8 ± 2.1	2~ -2	6600 ± 65	3.24 ± 4.10	0.49 ± 0.62
BH-9_46.35m	Shell	19.89	46.35	-26.46	-36.9±9.8	2~ -2	10213 ± 38	10.49 ±11.89	1.03 ± 1.16
BH-11_15.70m	Shell	20.17	15.70	4.47	1.2±1.2	2~ -2	6098 ± 88	3.22 ± 3.25	0.53 ± 0.53
BH-11_43.85m	Shell	20.17	43.85	-23.68	-17.5±6.6	2~ -2	9060 ± 70	-6.13 ±8.67	-0.68 ± 0.96
BH-14_33.95m	Coral	24.09	33.95	-9.86	-9.0±6.5	2~ -2	8273 ±73	-0.81 ± 8.58	-0.10 ±1.04
BH-10_16.35m	Foraminifera	23.96	16.35	7.61	-1.5±3.4	2~ -2	7293 ± 53	9.16 ± 5.45	1.26 ± 0.75
BH-12_17.55m	Shell	23.87	17.55	6.32	0.4 ± 2.6	2~ -2	6815 ±75	5.86 ±4.64	0.86 ± 0.68
BH-12_13.50m	Plant material	23.87	13.50	10.37	0.9 ± 0.9	2~ -2	4950 ± 90	9.46 ± 2.91	1.91 ±0.59
BH-15_42.20m	Shell	21.73	42.20	-20.47	-26.6±7.3	2~ -2	9710 ± 110	6.23 ± 9.38	0.64 ± 0.97
BH-15_16.50m	Shell	21.73	16.50	5.23	1.2±1.3	2~ -2	6183 ± 68	4.02 ± 3.37	0.65 ± 0.54
BH-15_8.60m	Organic sediment	21.73	8.60	13.13	1.0±1.0	2~ 0	5545 ± 60	11.08 ± 2.05	2.00 ± 0.37
BH-16_42.70m	Shell	20.39	42.70	-22.31	-20.8±7.4	2~ -2	9303 ± 78	-1.47 ± 9.43	-0.16 ±1.01
BH-16_16.60m	Shell	20.39	16.60	3.79	0.84±2.0	2~ -2	6543 ± 78	2.95 ± 4.04	0.45 ± 0.62

Tidal flat-swamps. half fresh water and half salty - very shallow marine deposits 29

future work- footwall as base point to redraw

DISCUSSION-THE CHANGE OF ACTIVE ZONE THROUGH TIME

5.20m~1.50m Average rate: 3.35±1.85 mm/yr Layer C 8,000~6,000 vr BP

Offset (Max~min): 2.45m~-4.75m Average rate: 0.85±0.38 mm/vr (ignored erosion)

Layer E

Offset (Max~min):

5.37m~1.09m

Average rate:

0.65 ±0.43 mm/vr

Layer D

Offset (Max~min):

Layer B 10,000~8,000 yr BP

Offset (Max~min): 5.40m ~ -0.20m Average rate: 1.30±1.40 mm/yr

FUTURE WORK EXTRACT EVERY POINT TO DETERMINE DEFORMATION RATE

Thrust(Pleistocene) Strike slip fault(Holocene, present) Different Time scale

DISCUSSION-THE CHANGE OF ACTIVE ZONE THROUGH TIME

Growth Strata

- B、C、D bottom: more shallower, more gentler for Layer B~25°, C~20°, D~5°
- Footwall thickening

DISCUSSION STRIKE SLIP FAULT?

Thrust(Pleistocene)
 Strike slip fault(Holocene, present)
 Different Time scale

Main Fault of Strike slip fault Occurred at Central of shear zone

圖 3.4.11 橫移砂箱試驗之地表破裂跡歷程—ST-2

Monitoring data- short-term deformation rate

---- Leveling- Uplift rate(2006~2017) ---- GPS-Horizontal rate(2015-2020)

Monitoring data- short-term deformation rate ---Leveling- Uplift rate(2006~2017) ---GPS-Horizontal rate(2015-2020)

Monitoring data- short-term deformation rate ---Leveling- Uplift rate(2006~2017) ---GPS-Horizontal rate(2015-2020)

Stage 1

Stage 3

CONCLUSION

- Study site was identified which located within highly shear zone which extend ~300m wide of Chekualin Fault in alluvial plain.
- 2. Active deformation zone is highly relative to the shear zone, which was not only related to the boundary between the shear zone and the intact part, but also fit to entire shear zone.
- 3. The deformation characteristics might be a thrust fault record by geological data, but turn into a strike- slip fault nowadays measured via geodetic data.

CONCLUSION

4. The present active line correspond uplift position of old active line since 7,000 yr isochrone.

