

NATIONAL CENTRAL UNIVERSITY

GRADUATE INSTITUTE OF APPLIED GEOLOGY

Progress Report

MONITORING LAND SUBSIDENCE

IN CHOUSHUI RIVER FLUVIAL PLAIN

BY UTILIZING THE SBAS-PS-INSAR TECHNIQUE

2022/04/01

Advisor: Prof. Chuen-Fa, Ni Student: Truong, Nguyen

INTRODUCTION

BASIC CONCEPTS

WORKFLOW

PREMILINARY RESULTS

FUTURE WORK

2

CONTENTS

INTRODUCTION

BASIC CONCEPTS

WORKFLOW

PREMILINARY RESULTS

3

FUTURE WORK

Study Area

- Western coastal region of central Taiwan
- Large agricultural areas
- Elevation is gentle, 0 m
 - in the coastal areas to
 - 100 150 m in areas
 - near the hill
- Hydrogeological
 - structures: Proximal-fan,
 - mid-fan, and distal-fan

areas.

Study Area

- Proximal fan + Middle fan:
 - gravel & coarse sand
- Distal fan: fine-grain materials -

fine sand, clay, and silt

Monitoring Networks				
Table: Summarized properties of the monitoring system				
	Leveling	GPS		
Spatial Resolution	1.5 km	10 – 15 km		
Monitoring Frequency	1 year	1 day		
Measurement (vertical) accuracy	0.5 – 1 cm	0.5 – 1 cm		

subsidence in central Taiwan. Engineering Geology, 147, 78-90.

8

Lu, C.-Y., Hu, J.-C., Chan, Y.-C., Su, Y.-F., & Chang, C.-H. (2020). The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. *Remote Sensing*, 12(20), 3315.

INTRODUCTION

BASIC CONCEPTS

WORKFLOW

PREMILINARY RESULTS

10

FUTURE WORK

Ley, A., D'Hondt, O., & Hellwich, O. (2018). Regularization and completion of TomoSAR point clouds in a projected height map domain. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 11(6), 2104-2114.

SAR images

Generate an image using radio waves (3, 5.6, 23 cm or longer)

Small antenna move along azimuthal direction to synthetize the effect of long antenna \rightarrow Synthetic aperture radar

SAR images

A SAR image contains two components: Intensity and Phase

Delivered as Single Look Complex (SLC) data → Intensity and Phase components as complex numbers for each pixel

SLC data is in the (slant) plane projection, not correspond to geo-coordinates

 $\mathsf{C}(r,a) = A(r,a)e^{i\varphi(r,a)}$

C(r,a) : complex value

SAR images

The general terms of the single look complex (SLC) image can be written:

 $\mathsf{C}(r,a) = A(r,a)e^{i\varphi(r,a)}$

- o r: range a: azimuth
- C(r,a): complex value
- A(r,a): amplitude
- Φ(r,a): phase
- e: Euler's number of exponential function
- i = $\sqrt{-1}$: imaginary number

Phase Difference

SBAS – Small Baseline Subset

CONTENTS

INTRODUCTION

BASIC CONCEPTS

WORKFLOW

PREMILINARY RESULTS

FUTURE WORK

~32 GPS Stations 3-

(blue triangles)

Calibrate and

assess the results from the

ne

InSAR process

Example of Pairing Criteria

1. Image Pairs Selection

- 2. Coregistration
- 3. Create Raw
 - Interferogram
- 4. Noise and Phase
 - Correction
- 5. PS Candidate
- Selection
- 6. Phase Unwrapping
- 7. Deformation
 - Calibration

Map

8. Stacked Deformation

- 1. Perpendicular Baseline < 200m
- 2. Acquisition Date between two
 - images < 25 days

1. Image Pairs Selection

- 2. Coregistration
- 3. Create Raw
 - Interferogram
- 4. Noise and Phase
 - Correction
- 5. PS Candidate
 - Selection
- 6. Phase Unwrapping
- 7. Deformation
 - Calibration

Map

8. Stacked Deformation

- 1. Perpendicular Baseline < 200m
- Acquisition Date between two images < 31 days

Results?

→ 360 interferograms

Image 1 spatially aligned with Image 2, utilizing the ground control points (GCPs) So that any feature in Image 1 overlaps as well as possible its footprint in Image 2

Image Pairs Selection

Coregistration

2.

Image courtesy of Massachusetts Executive Office of Environmental Affairs

Orthophoto image (Master image)

Image courtesy of mPower3/Emerge

25

Aerial photo image (Slave image)

Image 1 spatially aligned with **Image 2**,

Image 1 spatially aligned with Image 2, utilizing the ground control points (GCPs) So that any feature in Image 1 overlaps as well as possible its footprint in Image 2

Master image $C_1(r, a) = A_1(r, a)e^{i\varphi_1(r, a)}$ Slave image $C_2(r, a) = A_2(r, a)e^{i\varphi_2(r, a)}$

A complex interferogram $C_2 C_1^* = A_1 A_2 e^{i(\varphi_2 - \varphi_1)}$

***** is the complex conjugation

Lu, C.-H., Ni, C.-F., Chang, C.-P., Yen, J.-Y., & Chuang, R. Y. (2018). Coherence difference analysis of sentinel-1 SAR interferogram to identify earthquake-induced disasters in urban areas. *Remote Sensing*, *10*(8), 1318.

PERSISTENT SCATTERER EXTRACTION

 $D_A = \frac{\sigma_A}{m_A}$

 D_A : Amplitude Dispersion Index σ_A : St.Dev of amplitude values m_A : Mean of amplitude values

 $D_A \leq 0.3$

Found 835 369 PS candidates Density 383 PSCs / km²

- Image Pairs Selection
 Coregistration
 Create Raw Interferogram
- 4. Noise and Phase Correction
- 5. PS Candidate

Selection

- 6. Phase Unwrapping
- 7. Deformation
 - Calibration

Map

8. Stacked Deformation

835 369 PS candidates

- 1. Image Pairs Selection
- 2. Coregistration
- 3. Create Raw
 - Interferogram
- 4. Noise and Phase
 - Correction
- 5. PS Candidate
 - Selection

Map

6. Phase Unwrapping

7. Deformation

Calibration

8. Stacked Deformation

Why need calibration?

Error sources include:

-

-

- Ignore horizontal displacements
- Atmospheric effects
 - Phase unwrapping errors

How much error due to ignoring horizontal velocity component?

Maximum error due to projection of LOS into the vertical velocity induced by the horizontal velocity component:

 $\Delta V_e = \tan \theta (V_E \cos \alpha - V_N \sin \alpha)$

Fuhrmann, T., & Garthwaite, M. C. (2019). Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. *Remote Sensing*, 11(3), 241.

Average error due to neglecting the horizontal velocity components at the GPS stations in CRFP = -2.4 mm/year

Yang, Y.-J., Hwang, C., Hung, W.-C., Fuhrmann, T., Chen, Y.-A., & Wei, S.-H. (2019). Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. *Remote Sensing*, *11*(23), 2817.

Converted the InSAR LOS-velocities to vertical velocities as:

$$V_h = \frac{V_{LOS}}{\cos \theta}$$

 θ : Sentinel-1A incidence angle

- 1. Image Pairs Selection
- 2. Coregistration
- 3. Create Raw
 - Interferogram
- 4. Noise and Phase
 - Correction
- 5. PS Candidate
 - Selection
- 6. Phase Unwrapping

7. Deformation

Map

Calibration

8. Stacked Deformation

Calibration Processes

- 1. Reference points
 - To define the stable areas
 - → To have InSAR-derived
 - results similar patterns to
 - **GPS** measurements
 - → Reduce differences

2. GPS data

1. By reference points

Provide reference points, properly distributed

Reference points \rightarrow Stable areas

1. By reference points

BEFORE

 d_2

Selection criteria: UNDERSIGMA2.0

Take the point whose adjustment value is **smaller than 2*\sigma** to implement the interpolation

σ: stdev of all adjustment values

38

2. By GPS data

Concept:

- Surface deformation = a natural phenomenon
- Measured by GPS and InSAR
- Assuming: Both methods produce same results
- GPS : point-wise measurements, a part of InSAR measurements
- \rightarrow Calibrate InSAR results by GPS data

2. By GPS data

- Collect the PSCs within
 radius of 200m
 surrounding the GPS
 stations
- Calculate the average displacement of PSCs (at a particular time step)
- 3. Take difference between

displacement measures of GPS and InSAR \rightarrow a table

STATION	Day 12	Day 18	Day 24
STAT_1	X1	Y1	Z1
STAT_2	X2	Y2	Z2
STAT_N	Xn	Yn	Zn

2. By GPS data

- Collect the PSCs within
 radius of 200m
 surrounding the GPS
 stations
- Calculate the average displacement of PSCs (at a particular time)
- 3. Take difference between
- displacement measures of GPS and InSAR \rightarrow a table

4. For each (other) PSC, choose 5 nearest GPS stations 5. Apply thin-plate spline interpolation to interpolate differential values (at а particular time) to the PSC (based on diff. values of nearest stations) 6. Add back the differential values to displacement values of PSCs

CONTENTS

INTRODUCTION

BASIC CONCEPTS

WORKFLOW

PREMILINARY RESULTS

FUTURE WORK

CONTENTS

INTRODUCTION

BASIC CONCEPTS

WORKFLOW

PREMILINARY RESULTS

FUTURE WORK

EDOFREEMON

THANKYOU FOR YOUR ATLENTION