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Figure 1. Schematic of the hydrologic cycle simulation processes
(Neitsch et al., 2011)

The hydrologic cycle (Fig. 1) as simulated

base on the water balance equation:
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Introduction/motivation

Introduction:

The interaction between groundwater (GW) and surface water (SW) is an important aspect of the
water cycle. The management or use of one of them often impacts the availability and temporal patterns of
another. Besides, the assessment on the impact of climate change on GW recharge is a challenge in
hydrological researches because substantial doubts still remain, particularly in arid and semi-arid regions (David
et al. 2014).

The Soil and Water Assessment Tool (SWAT) (Gassman et al. 2007; and Neitsch et al. 2011) is a
physical based semi-distributed catchment-scale hydrological model. It simulates the surface runoff and GW
dynamics, management practices or climate change on water quantity at different geographical locations and
scales.

The MODFLOW-NWT (a Newton—Raphson formulation for MODFLOW-2005)(Niswonger et al. 2011),
which improves the solution of unconfined groundwater-flow problems simulates groundwater flow processes and
all associated sources and sinks on time steps.

Motivation

This study applies the coupled SWAT-MODFLOW models to estimate streamflow discharge, GW recharge,
and water exchange between GW and SW in the Choushui River Alluvial Fan, Taiwan. The research assesses

the impact of climate change scenarios influence on GW recharge in the future.



Materials and methods

Study area: Choushui River Alluvial Fan, Taiwan

Choushui River Alluvial Fan is located in
the central-west of Taiwan (Figure 2a),
which is the downstream part of Choushui
River watershed and occupies most area
of Chang-Hua County (north of Choushui
River) and Yun-Lin County (south of

Choushui River).
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Figure 2a. Location of the Choushui River alluvial fan (colorful area), and
the delineation in SWAT model. 4



Materials and methods

Using the QSWAT3 interface 2020, MODFLOW-NWT,

and QSWATMOD linkage files for a SWAT-MODFLOW
Table 1: Data sources used for the SWAT-MODFLOW models

Model set-up SWAT-MODFLOW models set-up

Input data
Model Data Type Frequency/resolution Source
DEM 30x30m Academia Sinica, 2019
Soil map 30x30 m Taiwan SSURGO database, 2020
Land-use 1000x 1000m USGS global land use, 2019

SWAT The Taiwan Climate Change Projection

Climate data Daily Information and Adaptation Knowledge
Platform (TCCIP)

Water Resources Agency, Ministry of
Economic Affairs

River runoff Daily

Storativity -

Aquifer thickness - .
MODFLOW 9 Water Resources Agency, Ministry of

Economic Affairs

Hydraulic conductivity -




Study site:
Choushui River Alluvial fan

Flow chart for coupling of SWAT-MODFLOW models
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‘ Model set-up
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Materials and methods

SWAT model set-up \ Figure 3. The distribution and proportion of each (a) soil type and

(b) land use after reclassification for HRU definition in SWAT
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Materials and methods
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Figure 4. Map of slope band after the

definition in SWAT
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Materials and methods

Weather data processing The data created follow database structure

Climate data
83-grid cells (1989-2100)
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Figure 6. The framework for weather database 9



Materials and methods

Future climate data with five-kilometer
spatial resolution, provided by TCCIP,
were selected to accommodate the
future climatic conditions of catchment

features.
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Figure 5. Location of the grid cells weather data (100 years in each points) in whole study area v :



Materials and methods

Model calibration | SWAT-CUP V5.1.6.2 (2019): It is enables sensitivity analysis, calibration, validation, and
for SW-GW uncertainty analysis of a SWAT model. The PEST utilized to adjust MODFLOW-NWT

parameters.
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Figure 6. Bridge and wells stations on Choushui River Alluvial chosen for checking model performance. '



Materials and methods

Model set-up MODFLOW model set-up
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Materials and methods

Preparing before calibrate MODFLOW N

N ‘ !
Time step period 2003-2025 A :

2003-2004: having initial
head for calibrate periods

2005-2011: calibration
2012-2017: validation
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Figure 7. Interpolation storativity and hydraulic conductivity by kriging method "



Materials and methods

GCM datasets for climate risk assessment

What is climate change?

Climate change refers to long-term shifts in temperatures and weather patterns. These chanaes mav be natural
however, since 1800s, human activities has been the main driver primarily d

factories, cars, etc. 2 Produced heat-trapping gases. (definition from Unitec
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Figure 8. AR5 Global Raw data resolution model with .
“bilinear interpolation method” to increase resolution 5km .

70 340.0
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- Across all Representative Concentration Pathways (RCPs), global mean temperature is projected to rise by 0.3
to 4.8 °C by the late-21st century
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Results and discussion/

Downstream of Choushui river: Average monthly streamflow out of reach during time step (m3/s).
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Figure 9. Observed and best simulated monthly streamflow at the outlets of Tzu-Chiang bridge during the
calibration period (1989-1994) and validation period (1995-2000)

SWAT model Pearson correlation coefficient RMSE R? Pbias NSE
Calibration 0.979 2.742 | 0.959 | -0.003 | 0.942
Validation 0.971 1.194 | 0.943 | -0.131 | 0.866
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Results and discussion

Another Downstream of Choushui river:Average monthly streamflow out of reach during time step (m3/s).
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Figure 10. Hydrographs of precipitation, observed and best simulated monthly streamflow at the outlets of Chi-Chou
Bridge during the calibration period (2005-2011) and validation period (2012-2017)

SWAT model| Pearson correlation coefficient RMSE R? Pbias NSE
Calibration 0.959 0.020 | 0.920 | -0.001 | 0.920
Validation 0.930 0.114 | 0.865 | 0.010 | 0.846
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Results and discussion

Upstream of Pei-kang river _
L #i-Tun-Kun Bridge
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Figure 11. Hydrographs of precipitation, observed and best simulated monthly streamflow at the outlets
of Tun-Kun Bridge during the calibration period (2005-2011) and validation period (2012-2017)

SWAT model| Pearson correlation coefficient RMSE R? Pbias NSE
Calibration 0.865 0.354 | 0.749 | 0.289 | 0.549
Validation 0.857 0.056 | 0.734 | -0.029 | 0.469
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Results and discussion

Downstream of Pei-kang river # % (2)Pei-Kang (2)
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Figure 12. Hydrographs of precipitation, observed and best simulated monthly streamflow at the outlets of Pei-Kang
(2) Bridge during the calibration period (2005-2011) and validation period (2012-2017)

SWAT model| Pearson correlation coefficient | RMSE | R? Pbias NSE
Calibration 0.865 0.354 [ 0.749| 0.289 | 0.549
Validation 0.857 0.605 [ 0.679| 0.181 | 0.548
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Results and discussion
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Figure 14: The distribution of storativity and hydraulic conductivity after calibrated 19



3D Grid Head:10/20/2003 12:00:00 AM

Results and discussion

Figure 15. Visualization of the proximity of the
observed and simulated heads of layer-1 by the
calibrated transient MODFLOW-NWT




Results and discussion

The statistics for the calibrated MODFLOW performance During the calibration period (2005-2011)
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Results and discussion

The statistics for the validated MODFLOW performance The validation period (2012-2017)
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Comparison groundwater recharge volume between RCPs with the baseline
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Figure 16: Change in annual GW recharge volume project MIROC5 against baseline
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Comparison groundwater recharge volume between RCPs with the baseline
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Figure 17: Change in annual GW recharge volume project MIROC5 against baseline
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Conclusions

(1) Both models (SWAT, MODFLOW) simulated well fitted the temporal patterns of streamflow and

groundwater head at the hydrology stations during the calibration and validation periods;

(2) The recharge mainly occurs in the top fan area, catching up some potential high recharge locations with

previously delineated sensitive areas for GW recharge by Central Geological Survey, Taiwan.

(3) The climate change signal predominates the annual variability, resulting in a more pronounced pattern of
greater recharge concentrated in fewer years. These findings help decision-makers and stakeholders

devise sustainable water resource strategies;

(4) The results demonstrate: properly calibrating surface water and groundwater recharge components of the
water cycle is critical. This is also a prerequisite step to apply climate change scenarios to predict surface

runoff and groundwater recharge in the future.

(5) The SWAT-MODFLOW would be a valuable tool for evaluating a wide variety of realistic scenarios in
order to determine the most efficient and workable water resource management plans for replenishing the

critically depleted SW and GW supplies.



Future work

(1) Estimation groundwater discharge to the stream and seepage from rivers to groundwater flow
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What are the RCPs?

RCP stands for ‘Representative
Concentration Pathway’. To understand
how our climate may change
in future, we need to predict
how we will behave.

Current
emissions are
tracking close
to the RCP8.5

pathway

For example, will we continue to burn
fossil fuels at an ever-increasing rate, or
will we shift towards renewable energy?

The RCPs try to capture these future trends.
They make predictions of how concentrations
of greenhouse gases in the atmosphere

will change in futuwre as a result of

human activities.

The four RCPs range from very high

{RCPE.5) through to very low (RCP2.6)

future concentrations. The numerical values

of the RCPs (2.6, 4.5, 6.0 and 8.5) refer to the
concentrations in 2100.
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