

1

Seminar 111-1

Hydromechanical model of land subsidence in the Chousui River Alluvial Fan: a site specific problem model

Presenter: Gumilar Utamas Nugraha Advisor: Prof. Chuen - Fa Ni Date: 2022/11/25

introduction

motivation

objectives

What is land subsidence?

Sudden sinking or **gradual settling** of the Earth's surface owing to movement of earth materials (Hoffmann et al.2003)

Problem related to subsidence

Structure failure, flooding, seawater intrusion (Galloway and Burbey, 2011)

Land Subsidence as a Global Issue

A: The Coastal plain and river Delta region

39.0 %

в

12.4%

5.41-11.30

Average LS (cm/yr)

9.8%

11.31-20

32.1%

1.61-5.40

B: The plain region in front of major mountains C: Regions in valleys and basins among mountains

14.3 %

C

(b)

3.1%

20.1-39

5

Land Subsidence in Taiwan

Land Subsidence in CRAF

land subsidence in Yunlin County by precise leveling from 1992 to 2007

the largest cumulative subsidence

> 1 meters!!

Why land subsidence in Yunlin County so

1.Excessive groundwater pumping

More than 100.000 well installed (745.37 million m³)

2.Unconsolidated alluvial layer

Gravel, Sand, silt, mud and clay

3.Groundwater recharge aren't sufficient

The rainfall in the Yunlin area varies greatly (551.89 million m³/year)

4.*Aquaculture* & *Agriculture*

>> 4010 ha (year 2002) 471.76 million m³(63.3 % of total withdrawal)

(Lin et al.2016, Hung et al.2010)

Research Question?

Which one that can cause land subsidence significantly?

Agriculture & Aquaculture? Or Industry?

How much the amount?

How can we reduce the amount of land subsidence?

Reduce pumping?

Motivation:

Understanding the influence of different pumping scenario in the different aquifer related to the changes of hydraulic head and total layer compaction in the site specific model

Objectives:

- 1. To Simulate the influence of groundwater pumping in different aquifer to hydraulic head in another aquifer
- 2. To Simulate the influence of groundwater pumping in different aquifer to layer compaction
- 3. To Calculate each layer compaction and its contribution to total subsidence

methodology

data

numerical model

Study Area

0 – 100 m (asl)

- Gravel, coarse sand (Proximal)
- Fine-medium sand (Mid)
- Inter-bedded clay, silt (Distal)

Four (4) Aquifer

Four (4) Aquitard

٠

۲

Research Workflow

CSUB: Skeletal Storage, Compaction, Subsidence Package

(Hughes et al.,2022)

The three-dimensional ground-water flow equation (Harbaugh et al., 2000)

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) - W = S_s \frac{\partial h}{\partial t}$$

<i>x</i> , <i>y</i> , and <i>z</i>	: cartesian coordinates	W	: Volume of sources and (or) sinks of water
K_{xx} , K_{yy} , and K_{zz}	: hydraulic-conductivity tensor	S _s	: specific storage of the aquifer
h	: hydraulic head	t	: time

Effective stress changes and compaction relation

$$\Delta b = \frac{0.434b_0}{(1+e_0)\sigma'} \left[C_n (\sigma'_n - \sigma'_{c,n-1}) + C_r (\sigma'_{c,n-1} - \sigma'_{n-1}) \right] \qquad C_n = \begin{cases} C_c, \sigma'_n > \sigma'_{c,n-1} \\ C_r, \sigma'_n \le \sigma'_{c,n-1} \end{cases}$$

 σ'_{n-1} and σ'_n are effective-stress values at times t_{n-1} and t_n

 $\sigma'_{c,n-1}$ is the preconsolidation-stress value at time t_{n-1}

Data Availability

Groundwater Level Observation

Conceptual Model: from regional to local scale

- 50 rows x 50 columns •
- 10 x 10 meter grid cell size ٠
- 8 Layer (4 Aquifer & 4 Aquitard) ٠

No-Flow

Constant Head

CSUB Parameter

No	Layer	Elastic Specific Storage	Equivalent Number	Inelastic Specific Storage	Equivalent Thickness	Starting Compaction	Starting Head	Vertical Hydraulic Conductivity	Porosity	Ss / Sy
1	Aquifer 1	8.39E-04	1.00E+00	2.30E-03	7.00E+00	0.00E+00	6.20E+00	3.12E-03	3.00E-01	2.00E-01
2	Aquitard 1	8.39E-03	1.00E+00	2.30E-02	3.20E+01	0.00E+00	6.20E+00	5.29E-04	5.20E-01	2.00E-01
3	Aquifer 2	4.07E-04	4.00E+00	3.19E-03	4.25E+00	0.00E+00	2.10E+00	3.12E-03	3.00E-01	5.95E-03
4	Aquitard 2	3.13E-03	1.00E+00	2.51E-02	2.80E+01	0.00E+00	2.10E+00	5.29E-04	4.40E-01	1.45E-01
5	Aquifer 3	4.28E-04	3.00E+00	1.25E-02	3.00E+00	0.00E+00	2.60E+00	6.20E-04	3.00E-01	7.40E-03
6	Aquitard 3	8.39E-03	1.00E+00	2.30E-02	2.70E+01	0.00E+00	2.60E+00	7.50E-05	4.30E-01	1.63E-01
7	Aquifer 4	8.39E-04	4.00E+00	2.30E-03	4.75E+00	0.00E+00	3.20E+00	6.20E-04	3.00E-01	7.60E-03
8	Aquitard 4	8.39E-03	1.00E+00	2.30E-02	9.60E+01	0.00E+00	3.20E+00	7.50E-05	4.00E-01	1.46E-01

	Bottom			
Aquifer	Constant Head West (m)	Constant Head East (m)		
Aquifer 1	6.0	6.4		
Aquifer 2	2.0	2.2		
Aquifer 3	2.0	2.3		
Aquifer 4	3.0	3.5		

Layer	Hydraulic Conductivity (m/day)	Compressible Thickness (m)
Aquifer 1	2.00E+02	7.00E+00
Aquitard 1	2.00E-01	3.20E+01
Aquifer 2	1.45E+02	1.70E+01
Aquitard 2	1.45E-01	2.80E+01
Aquifer 3	1.63E+02	9.00E+00
Aquitard 3	1.63E-01	2.70E+01
Aquifer 4	1.46E+02	1.90E+01
Aquitard 4	1.46E-01	9.60E+01

Init.Preconsolidation Stress (Hung et al, 2012):

Void Ratio (Hung et al, 2012):

For S_{ske} and S_{skp} : 0.00001 to 0.1

0.2 to 0.8

Initial parameter input CSUB program

	Interbed	Equivalent Interbed	Initial Elastic Specific	Initial inElastic	Initial	
	Thickness	Number	Storage	Specific Storage	Porosity	Delay KV
Aquifer 1	7.74E+00	2.00E+00	2.30E-03	8.39E-04	3.00E-01	3.12E-03
Aquitard 1	3.00E+01	1.00E+00	2.30E-03	8.39E-03	5.20E-01	2.50E-06
Aquifer 2	2.79E+01	8.00E+00	3.19E-03	4.07E-04	3.00E-01	3.12E-03
Aquitard 2	1.13E+01	1.00E+00	2.51E-02	3.13E-03	4.40E-01	2.50E-06
Aquifer 3	3.59E+01	7.00E+00	1.25E-02	4.28E-04	3.00E-01	6.20E-04
Aquitard 3	9.10E+00	1.00E+00	2.30E-02	8.39E-03	4.30E-01	2.50E-06
Aquifer 4	7.14E+01	8.00E+00	2.30E-03	8.39E-04	3.00E-01	6.20E-04
Aquitard 4	3.48E+01	1.00E+00	2.30E-02	8.39E-03	4.00E-01	2.50E-06

result

Calibration:

groundwater model

Soil mechanics model

Data Selection for Calibration

Daily Data

Weekly Data

Model Performance

Calibration Result for Subsidence

discussion

SUBSIDENCE MODEL

Simulate a different scenario of land subsidence

- 1. How large subsidence will occured if we pumped ½, 2 and 3 times larger than calibrated pumping rate value?
- 2. How large subsidence will occurred, if we pump the groundwater with the same pumping rates (mean value of calibrated pumping rates of all aquifer) on each aquifer? Which aquifer that will have larger subsidence than others?
- How large subsidence will occurred, if we have constant pumping: 500 m³/day, 2500 m³/day, 5000 m³/day
- 4. How large subsidence will occurred, if we distribute pumping rate to 5 wells with different pumping schedule

Aquifer 2

Aquifer 3

Aquifer 4

Week D

The Same Pumping Rates On Each Aquifer

Week 0

The constant Pumping Rates On Each Aquifer

Scenario 3

Scenario 3:

Scenario 4b: Aquifer 2

	- Dumning Rates	
From	То	Fullping Rates
01/01/2019 00:00:00	01/01/2019 07:01:00	No pumping
01/01/2019 07:01:00	01/01/2019 10:01:00	30 % of Calibrated Value
01/01/2019 10:01:00	01/01/2019 14:01:00	40 % of Calibrated Value
01/01/2019 14:01:00	01/01/2019 18:01:00	30 % of Calibrated Value
01/01/2019 18:01:00	01/02/2019 00:00:00	No Pumping

Scenario 4b: Rate with pumping scheduling

Scenario 4b: Aquifer 2

conclusion

□ This study also evaluates pumping in the aquifer which will cause severe land subsidence at the study site.

□ Although the simulation model cannot represent the entire complex groundwater system, it is able to match the historical head and subsidence data at the Tuku groundwater monitoring station.

□ Scenario 1 shows that aquifer 2 has the highest probability of subsidence among other aquifers.

□ Scenario 2 shows that aquifer 2 and 3 have tendency to have serious subsidence when huge amount of pumping rates were applied.

□ Scenario 3 suggest that with constant pumping rate amount in the aquifer 4 could cause the serious subsidence.

□ Scenario 1 and Scenario 2 result looks have a reasonable output for subsidence simulation.

future work

1. calculate impact to another aquifer by pumping in certain aquifer

2. Simulate which layers that has larger compaction than others by pumping in specific aquifer

3. Calculate contribution of each layer compaction to total land subsidence

4. Analyze material that control the rate of land subsidence

Thank you

ening...

Land subsidence field trip at Tuku (2022)