The effects of inherent distribution of discontinuities and stress-induced anisotropy on pore water pressure distribution of rock slope.

Presenter: Chia-Yi Liu Advisor: Jia-Jyun Dong Date: 2022/09/30

Model setting

Мо	hr-Coul	omb	mod	le
----	---------	-----	-----	----

Material properties	Value	
Dry density	18000 $(\frac{kg}{m^3})$	
Young's modulus, E	200 (MPa)	
Poison ratio, ν	0.33	
Friction angle, ϕ	32°	
cohesion, c	31.4 (<i>kPa</i>)	
Stress ratio, \overline{K}	1.1	
(CECI, 2021) (Chen C. C.& Yu C. W., 1994)		

		Material properties	Value
	Fluid modulus, <i>K_f</i>	10 (kPa)	
		porosity, n	0.33
	permeability, <i>k</i> (Mobility permeability)	$\frac{m^2}{Pa * sec}$	
		saturation,S	1
I			/

Methodology

Continuum approach

Continuum approach(Oda, 1985)

Parameter sensitivity analysis (Cheng, 2006)

The inherent distribution of discontinuities

The stress-induced anisotropy

- The orientation of discontinuities, $E(\hat{n})$

• The aperture of discontinuities, g(t)

Directional density function, $E(\hat{n})$ (Kanatani, 1984)

 $E(\hat{n})d\Omega = 1$ • The vector \hat{n} accounts for the total proportion of all vectors

 $E(\hat{n}) = \frac{1}{4\pi} (1 + D_{ij}n_in_j)$ • Use the fabric tensor (D_{ij}) as the coefficient to approximate the vector distribution • The value of D_{ij} can represent the anisotropic degree

• **1** The normal vector of discontinuity

Z(3)

Y(2)

X(1)

• $D_{11} = D_{22} = D_{33} = 0$, it has same number of discontinuities in all directions.

Directional density function, $E(\hat{n})$ (Kanatani, 1984)

 $E(\hat{n})d\Omega = 1$

• The vector $\hat{\mathbf{n}}$ accounts for the total proportion of all vectors

 $\mathrm{E}(\hat{\mathrm{n}}) = \frac{1}{4\pi} (1 + \mathrm{D}_{ij} \mathrm{n}_i \mathrm{n}_j)$

Y(2)

X(1)

Z(3)

Use the fabric tensor (D_{ij}) as the coefficient to approximate the vector distribution
 The value of D_{ii} can represent the anisotropic degree

- **T** The normal vector of discontinuity
- $D_{11} = D_{22} = D_{33} = 0$, it has same number of discontinuities in all directions.
- $D_{33} > D_{11} = D_{22}$, the number of normal vector in the vertical direction is more than the number of normal vector in the horizontal direction

The inherent distribution of discontinuities

The stress-induced anisotropy

- The orientation of discontinuities, $E(\hat{n})$

• The aperture of discontinuities, g(t)

The function of aperture, g(t) (Oda, 1986)

• Assume each fracture are two plates connected by springs

• $\overline{K_n}$ (-)is depend on strength of material

$$g(t) = t(\hat{n}) = t_0 - \left(\frac{\overline{\sigma_n}}{\overline{K_n}}\right)$$

Result

The inherent distribution of discontinuities

Continuum approach

(crack tensor)

Equivalent permeability tensor

Pore water pressure distribution

(unit of $k = \frac{m^2}{Pa * sec}$) 19

Pore pressure variation (%) Cut Plane: on 1.0000E+02 9.5000E+01 9.0000E+01 8.5000E+01 8.0000E+01 7.5000E+01 7.0000E+01 6.5000E+01 6.0000E+01 5.5000E+01 5.0000E+01 4.5000E+01 4.0000E+01 3.5000E+01 3.0000E+01 2.5000E+01 2.0000E+01 1.5000E+01 1.0000E+01 5.0000E+00 0.0000E+00

 D_{33} / , variation /

Maximum variation:44%

The distribution of pore water pressure

The distribution of water head

Conclusion

• Uniform stress

• The inherent distribution of discontinuities (D₁₁, D₂₂, D₃₃)

- Nonuniform stress
- Stress-induced anisotropy
- $\overline{D_{11}}, \overline{D_{22}}, \overline{D_{33}} = 0$

Equivalent permeability tensor

• When D_{33} 1, pore pressure variation 1

 When depth ↑, the principal permeability ↓

• Uniform stress

• The inherent distribution of discontinuities (D₁₁, D₂₂, D₃₃)

- Nonuniform stress
- Stress-induced anisotropy
- $D_{11}, D_{22}, D_{33} = 0$

Equivalent permeability tensor

Future work

- Nonuniform stress
- The inherent distribution of discontinuities (D₁₁, D₂₂, D₃₃)

Slope stability analysis

Pore pressure distribution

Thank you for your attention.

30

The function of aperture, g(t) (Oda, 1986)

•
$$t = t_0 - \left(\frac{\overline{\sigma_n}}{\overline{K_n}}\right)$$
 Normal closure, $\overline{K_n} \uparrow \Delta t \downarrow$

• $\overline{K_n}$ (-)is depend on strength of material

•
$$g(t) = t(\hat{n}) = t_0 - \left(\frac{\overline{\sigma_n}}{\overline{K_n}}\right) = r\left(\frac{1}{c} - \frac{\overline{\sigma_{ij}}\widehat{n_i}\widehat{n_j}}{\overline{h}}\right)$$

 σ_n

 σ_n

The density function of aperture, g(t) (Oda, 1986)

$$\sigma_{n} = \text{normal stress}, \overline{K_{n}} = \text{average stiffness}$$
• $t = t_{0} - \left(\frac{\overline{\sigma_{n}}'}{\overline{K_{n}}}\right)$ Normal closure δ
• $K_{n} = \frac{\overline{\sigma_{n}}}{\delta} = \frac{1+b\overline{\sigma_{n}}}{a} = \frac{1+b\overline{\sigma_{ij}}\widehat{n_{i}}\widehat{n_{j}}}{a} = \frac{1+\left(\frac{1}{t_{0}K_{0}}\right)\overline{\sigma_{ij}}\widehat{n_{i}}\widehat{n_{j}}}{\frac{1}{K_{0}}} = \frac{h+c\overline{\sigma_{ij}}\widehat{n_{i}}\widehat{n_{j}}}{r}$
experimentally determined
• $\overline{\sigma_{n}} = 0, a = \frac{1}{K_{0}}, K_{0}$ initial stiffness
• $\overline{\sigma_{n}} \to \infty, b = \frac{1}{t_{0}K_{0}}, t_{0}$ initial aperture
aspect ratio, c
• $c = \frac{r}{t_{0}}$, where $r = \text{crack length}, t_{0} = \text{initial aperture}, r \uparrow t_{0} \uparrow$
normal stiffness coefficient, h
• $K_{0} = \frac{h}{r}$, where $r \uparrow K_{0} \downarrow$
• $\overline{K_{n}} = \int_{\Omega} K_{n} E(\widehat{n}) d\Omega = \frac{h+c\overline{\sigma_{ij}}\widehat{n_{i}}\widehat{n_{j}}}{r} = \frac{h}{r}$
• $g(t) = t(\widehat{n}) = t_{0} - \left(\frac{\overline{\sigma_{n}}'}{\overline{K_{n}}}\right) = \frac{r}{c} - \left(r\frac{\overline{\sigma_{ij}}\widehat{n_{i}}\widehat{n_{j}}}{h}\right) = r\left(\frac{1}{c} - \frac{\overline{\sigma_{ij}}\widehat{n_{i}}\widehat{n_{j}}}{h}\right)$

The density function of aperture, g(t) (Oda, 1986)

- Cheng & Toksoz(1979) was used wave velocity through rock mass to determine the aspect ratio.
- The rock has smaller value of porosity, it would has smaller wave velocity, then the aspect ratio would has smaller value
- The aspect ratio of Navajo sandstone roughly equal to 1000
- Using the experimental results of uniaxial test, it can access the value of initial normal stiffness by the uniaxial strength of different material.
- The initial normal stiffness of fresh sandstone to medium-weathering sandstone is between the range 3.6~25.6MPa/mm, so the range of h equal to 360~2560MPa.

The density function of aperture, g(t) (Oda, 1986)

• Fortin(2005) defined aspect ratio in the range $10^2 \sim 10^4$ approximately.

• The initial normal stiffness of fresh sandstone to medium-weathering sandstone is between the range 3.6~25.6MPa/mm, so the range of *h* equal to 360~2560MPa. (Chen,2005)

(where $r = \text{crack length}, t_0 = \text{initial aperture}, K_0 = \text{initial normal stiffness}$)

Pore pressure variation (%) Cut Plane: on 1.0000E+02 9.5000E+01 9.0000E+01 8.5000E+01 8.0000E+01 7.5000E+01 7.0000E+01 6.5000E+01 6.0000E+01 5.5000E+01 5.0000E+01 4.5000E+01 4.0000E+01 3.5000E+01 3.0000E+01 2.5000E+01 2.0000E+01 1.5000E+01 1.0000E+01 5.0000E+00 0.0000E+00

 D_{33} / , variation /

Maximum variation:26%

Result I: The direction of maximum principle permeability at horizontal $1 \leftrightarrow 0^{\circ}$

Zone Specific Discharge Vectors (m/s) Cut Plane: on Maximum: 8,16535e-07 Scale: 6e+06

Result Π : The direction of maximum principle permeability parallel slope surface

Effects of anisotropic of hydraulic conductivity on slope stability.

Isotropic hydraulic conductivity FOS=2.0

The currently selected domain for mechanical analysis may be insufficiently large to eliminate the boundary constraint on the development of the failure surface (bottom(b)).

Anisotropic ratio of hydraulic conductivity $k_x/k_y = 100$ FOS=2.0

the simulated results still revealed that the effect of the hydraulic conductivity anisotropy on the PWP has a significant influence on effective normal stress and, thus, shear strength along the failure surface.

(Dong et al., 2006)

Boundary effect

Chugh, A. K. (2003). On the boundary conditions in slope stability analysis. Int. J. Numer. Anal. Methods Geomech.

• For W = H ratio less than 5, the differences between 2-D and 3-D FoS values are significant.

45

Directional density function

Normal vector $N_{i_1i_2...i_n} = \langle n_{i_1}n_{i_2}...n_{i_n} \rangle$ "distribution density" $f(n) = \frac{1}{N} \sum_{\alpha=1}^{N} \delta(n - n^{(\alpha)}).$ $\int f(n) dn = 1, \quad \int n_{i_1}...n_{i_n}f(n) dn = \langle n_{i_1}...n_{i_n} \rangle$ $f(n) = \frac{1}{4\pi} [D + D_{ij}n_in_j + D_{ijkl}n_in_jn_kn_l + \cdots]$ $f(n) = \frac{1}{4\pi} [D + D_{ij}n_in_j]$