

Explicit analytical solution for the advectiondispersion transport equation in a radial twozone confined aquifer

Student: Wei Kai Chen Advisor: Prof. Jui-Sheng Chen Date:2022/10/14

Outline

Background

Freshwater is essential for human survival and well-being

Background

Problems with groundwater contamination have grown increasingly severe worldwide over the past few decades.

Impact: Human health

• Contaminated groundwater will pose a hazard to human health.

Impact: Study on groundwater system

• It has motivated many theoretical and experimental studies on the transport of contaminants dissolved in the groundwater system.

Background

Analytical models in which the advection dispersion equations (ADE) is solved is continually being developed .

$$D\frac{\partial^2 c}{\partial x^2} - v\frac{\partial c}{\partial x} = R\frac{\partial c}{\partial t}$$

One-dimensional for ADE

• Analytical models can be used for a modeling tool for contaminant transport in groundwater system.

Literature

Uniform flow field: Analytical solutions

 Analytical solutions for advective dispersive transport problems in a uniform flow field have been reported in the literature. (Van Genuchten,1982; Batu,1993; Chen and Liu,2011)

Non-uniform flow field: Complicated and difficult

- Deriving analytical solutions for solute transport in a nonuniform flow field is complicated and difficult.
- Because of the dependence of the flow field on the spatial locations. (Chen et al., 2002)
- Solute transport in a radial flow field created by an injection well can be viewed as a special case of solute transport in a non-uniform flow field.

Literature

Skin zone: Small area around the well screen

• It is known that there is a small area around the well screen showing anomalous hydrogeological properties called the skin zone. (Barker and Herbert, 1982;Houben, 2015)

The radial thickness of the skin zone generally extends from a few millimeters to several meters.

Literature

Skin zone: Effect

• There may be changes in porosity, permeability and dispersivity in the skin zone due to the intrusion of drilling mud or extensive well development. (Novakowski,1989;Yeh et al,1982;Chen et al,2012)

Literature

Analytical solutions for solute transport in a radial flow field have a variety of practical applications related to the study of <u>Well Tracer Test</u> and <u>aquifer</u> remediation by pumping.

Objection

Develop explicit analytical solutions for reactive transport in a radial two-zone confined aquifer will be derived for equilibrium-controlled sorption processes.

Methodology

Skin zone function:

$$\frac{A_{s}\alpha_{s}}{r}\frac{\partial^{2}C_{1}(r,t)}{\partial r^{2}} - \frac{A_{s}}{r}\frac{\partial C_{s}(r,t)}{\partial r} = R_{s}\frac{\partial C_{s}(r,t)}{\partial t}, r_{w} \le r \le r_{s} + r_{w}, t > 0$$
Where $A_{s} = \frac{Q}{2\pi\phi_{s}B}$

s : skin zone

C : concentration $[ML^{-3}]$

- *t* : time since injection [*T*]
- *r* : radial distance [*L*]
- Q : constant injection rate $[L^3T^{-1}]$
- B : aquifer thickness [L]
- ϕ : porosity [-]
- α : radial dispersivity [*L*]

Aquifer zone function:

$$\frac{A_f \alpha_f}{r} \frac{\partial^2 C_f(r,t)}{\partial r^2} - \frac{A_f}{r} \frac{\partial C_f(r,t)}{\partial r} = R_f \frac{\partial C_f(r,t)}{\partial t}, r_{\rm s} + r_{\rm w} \le r \le r_L, t > 0$$

Where $A_f = \frac{Q}{2\pi\phi_f B}$

f : aquifer formation zone C : concentration $[ML^{-3}]$ t : time since injection [T]r : radial distance [L]Q : constant injection rate $[L^3T^{-1}]$ B : aquifer thickness [L] ϕ : porosity [-] α : radial dispersivity [L]

Initial conditions:

•
$$C_1(r,t) = 0, r_w \le r \le r_s + r_w, t > 0$$

•
$$C_2(r,t) = 0, r_s + r_w \le r \le r_L, t > 0$$

Boundary conditions:

•
$$C_1(r = r_w, t) = C_0$$

•
$$\frac{\partial C_2(r=r_L,t)}{\partial r}=0$$

•
$$C_1(r = r_1, t) = C_2(r = r_1, t)$$

•
$$\alpha_1 \frac{\partial C_1(r = r_s + r_w, t)}{\partial r} = \alpha_2 \frac{\partial C_2(r = r_s + r_w, t)}{\partial r}$$

Methodology

The solution strategy adopted herein is by Chen et al. (2016)

Results and Discussion

Results and Discussion

Eigenvalue problem

Eigenfunction graph

Parameters	Values
well radial, r_w [L]	25
skin zone thickness, <i>r</i> _s [L]	0.5
total length, r_L [L]	0.1
initial concentration, $C_0[ML^{-3}]$	40
radial dispersivity in skin zone, α_s [L]	2.5
radial dispersivity in aquifer zone, α_f [<i>L</i>]	2.5
porosity, ϕ_1 [-]	0.1
porosity, ϕ_2 [-]	0.1
constant injection rate, $Q[L^3T^{-1}]$	5

Need to choose the eigenvalue that to get $f(\beta_m) = 0$

Results and Discussion

Eigenvalue problem

Eigenfunction graph

Parameters	Values
well radial, r_w [L]	25
skin zone thickness, $r_{\rm s}[{\rm L}]$	0.5
total length, r_L [L]	0.1
initial concentration, $C_0[ML^{-3}]$	40
radial dispersivity in skin zone, α_s [L]	2.5
radial dispersivity in aquifer zone, α_f [<i>L</i>]	2.5
porosity, ϕ_1 [-]	0.1
porosity, ϕ_2 [-]	0.1
constant injection rate, $Q[L^3T^{-1}]$	5

Need to choose the eigenvalue that to get $f(\beta_m) = 0$

Future work

• Use the convergence tests on eigenvalues.

• Use the fortran-based computer program code for the derived analytical solutions.

• Development of the numerical model to check the explicit analytical solutions.

Thanks

