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|. BACKGROUND

Land subsidence is a gradual settling or sudden sinking of the Earth’s surface due to the
surface or subsurface movement of the earth’s material.

natural processes (soil compaction, withdrawal of underground fluids)

Cause: *[
human activities (extraction of underground resources or overpumping of groundwater)
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|. BACKGROUND

Why does land subsidence matter?
Land subsidence Damages Infrastructure and Natural Resources

- Infrastructure

» Reduced conveyance capacity and freeboard, panel damage; water surface
and liner misalignment; erosion/deposition in unlined channels

» Roads, rails, bridges, pipelines, wells, etc
- Natural resources

» Reduced aquifer-system storage capacity

* Impacts to wetland, riparian, and aquatic ecosystems



Measuring Land Subsidence

We measure land
subsidence using a
variety of methods.

\/{| Bench Mark

|. BACKGROUND

InSAR

A m

& =
7 i

; é\ LA
. s

*measures part of land subsidence




|. BACKGROUND

Simulation and Prediction Land Subsidence

Several methods have been developed to simulate and predict land subsidence.
- “Aquifer drainage” models based on Terzaghi theory
- Poroelasticity models based on Biot theory

- Empirical and artificial intelligence methods

The most widely used method is the “aquifer drainage” model developed by Riley (1969) and
based on Terzaghi’s (1923) principle.

Many tools are used for the numerical simulation of land subsidence:
- Interbed Storage Package (IBS)
- Subsidence and Aquifer-System Compaction Package (SUB)
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Key parameters for Simulation and Prediction
Land Subsidence

- elastic skeletal storage coefficient (S, )
- inelastic skeletal storage coefficient (S,,)

- or elastic (S,,.) and inelastic (S,,,) skeletal-
specific storage

Elastic: can recoverable when aquifer
pressure returns to initial values.

Inelastic: can not be recoverable

Storage coefficient is the volume of water an
aquifer releases per unit area per unit drop in
water level.

Specific storage is the volume released from
storage per unit volume of aquifer per unit
drop in the head.
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|. BACKGROUND

How to estimate the storage parameters

The conventional methods used to estimate: laboratory experiments or pumping tests.
However, obtaining soil samples from deep layers and pumping tests is difficult.
These parameters have been estimated by long-term processing deformation and hydraulic head records.

Previous hydrogeological studies were mainly focused on characterizing average elastic and inelastic
values for complex aquifer systems based on the assumption of yearly and seasonal behavior.

However, elastic deformation may not be seasonal, especially in human-influenced.

This paper estimates the parameters by separating elastic and inelastic subsidence at various depths and
over time from piezometric and extensometer data.



Study Area: in North China
Plain

(Beljing, Tianjin, Hebel,
Henan, and Shandong
provinces)

Piezometric and
extensometer data
from 3 stations:

- Tianzhu
- Pinggezhuang
- Cangzhou

1. INTRODUCTION

1H6°00"E

1IS°00°E

‘ [}_c{ijing al

Pigch'uar':é '

114°0'0°E

Shandong:Province
& ".‘ L
- v ,}*_ ¥

w
0 50 100
I T N N |

Legend

@ Extensometer stations

[: Boundry of North China Plain
: Provincial boundry
Deformation rate in 2012 (mm/year)

>-10

B s0--10

v

200 km

L

120°00"E

T T T
114°0°0°E L16°00"E 118°0'0°E

A
120°0'0"E

L
40°0'0°N

L]
3RY00'N

36°0'0"N

Stations location, Deformation rate in study area




1. INTRODUCTION

Tianzhu Pinggezhuang Cangzhou
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1. METHODOLOGY

Step 1. Provide a theoretical basis for separating elastic and inelastic deformation

Hydraulic head change - elastic and/or inelastic deformation (Terzaghi).

Elastic deformation: Hydraulic head > Hydraulic minimum historical head

Inelastic deformation: Hydraulic head < Hydraulic minimum historical head

The actual value of the hydraulic minimum historical head is updated as the hydraulic head
exceeds the historical minimum.



1. METHODOLOGY

Step 2. Separating Elastic and Inelastic deformation components

Function:
x(1) = A*s(1)

where x(t) = [x1(t),X2(t), -+, Xmm(t) | .Og)sbesr?/;vtieodnssl?gnnaalllrsnatrlx composed of m

s(t) = [s1(t), sa(t), -+, sp(t) ]T : Source signal matrix composed of n
Independent source signals

A :matrix of m x n dimensions

t : time



1. METHODOLOGY

Step 3. Estimation storage parameters

AD S,.. elastic skeletal storage coefficient
€
Ske = AL S,,: inelastic skeletal storage coefficient
¢ Ab,: elastic deformations
Abv Ah,: hydraulic head (elastic)
Sty = Ab,: inelastic deformation
kV Ah \%
Y Ah,: hydraulic head (inelastic)
L Ske
Sske — b_
0 . = g
S, €lastic skeletal-specific storage
q S, Inelastic skeletal-specific storage
kv
S = b_ by: aquifer thickness
0
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IV. RESULTS

Land subsidence had characterized by three behaviors: elastic, elastic-inelastic, and inelastic
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IV. RESULTS

The correlations between deformation and hydraulic head acting on deformation.
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Deformation(mm)

The results estimated by this paper’s method are similar to the traditional linear fitting method.
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IV. RESULTS

Paper’s method
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Elastic skeletal storage coefficient

IV. RESULTS

Elastic skeletal storage coefficient of each layers varies over time
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Inclastic skeletal storage coefTicient
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IV. RESULTS

The inelastic skeletal storage coefficient of each layer decreases clearly over time.
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IV. RESULTS

Storage parameters were estimated for the various depth layers at 3 extensometer stations in the
North China Plain.

Number of layers Lithology Depth (m) Thickness Deformation Ske Siv S (m™') S, Sae/ S
(m) type (m™)
TZ:148.49-218.89 Silt, Fine sand 148.49-218.89 70.4 Elastic-inelastic E.S = 107 ;.ﬁ w 100 3.5 = 10 3.2 = 10 0.16
TZ:117-148.49 Silt, Coarse sand 117-148.49 31.89 Elastic-inelastic 43.? = 107 f.ﬁ w 100 _I 2= 10 E.l = 10 0.14
TZ:82.3-102 Silty clay, Fine sand 82.3-102 19.7 Elastic-inelastic qI.4 x 10 E.CI = 107 3.3 = 10 i.E = 10° 0.05
TZ:48.5-64.5 Fine sand, Coarse sand 48.5-64.5 16 Elastic 46 =« 100 - 29 = 10 - -
4 5
PGZ:233.5-300 Sand, silty clay 233.5-300 B56.5 Elastic-inelastic 4I.?" = 107 4?.2 x 107 3.5 = 100 1.1 = 107 0.23
PGZ:119.64-208.8 Clay 119.64-208.8 89.10 Inelastic - E.ﬂ x 107 - E.S » 10 -
PGZ:63.1-119.64 Sand, silty clay 63.1-119.64 56.54 Elastic-inelastic q4.5- = 107 3.5 = 10 ﬁS.G = 107 5.2 = 100 0.13
PGZ:31.9-63.1 Silty clay, silty fine sand 31.9-63.1 31.2 Elastic 46.8 « 100 - 2.2 10 - -
CZ:195.5-252.8 Silty sand, Silty fine sand, Silty 195.5-252.8 57.3 Elastic-inelastic 1.7 = 107 4.1 = 100 29 x 100 7.2 10 0.40
clay 3 3 5 5
CZ:68.3-195.5 Clay, Silty fine sand 68.3-195.5 127.2 Elastic-inelastic :).CI = 10 ;.5 = 10 Iﬁ?.] = 10 1.2 = 10 0.06



V. CONCLUSIONS

This paper proposes a novel methodology integrating Fast-ICA and a variable hydraulic
minimum history head to unravel elastic and inelastic specific storage in confined aquifer
systems.

This method can effectively separate soil deformation’'s elastic and inelastic components.
The relations between the storage parameters and depth, lithology, and time are explored.

Lithology and depth control the values of storage parameters, and at different aquifer systems,
they generally decrease with depth.
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