

National Central University College of Earth Sciences

Applied Geology Seminar

Unraveling elastic and inelastic storage of aquifer systems by integrating fast independent component analysis and a variable pre-consolidation head decomposition method

Li, J., Zhu, L., Gong, H., Zhou, J., Dai, Z., Li, X., Wang, H., Zoccarato, C., Teatini, P. Journal: Hydrology Publication date: March 2022 Student: Nooc-Thanh-Vu Nouven

Student: Ngoc-Thanh-Vu Nguyen Advisor: Prof. Shih-Jung Wang

CONTENT

- I. BACKGROUND
- II. INTRODUCTION
- III. METHODOLOGY
- IV. RESULTS
- V. CONCLUSIONS

Land subsidence is a gradual settling or sudden sinking of the Earth's surface due to the surface or subsurface movement of the earth's material.

natural processes (soil compaction, withdrawal of underground fluids)

Cause:

- human activities (extraction of underground resources or overpumping of groundwater)

Global Land Subsidence, 2019 (sources: United States Geological Survey)

Maximum area affected: China, USA

Maximum Magnitudes: Mexico, USA, Japan

Why does land subsidence matter?

Land subsidence Damages Infrastructure and Natural Resources

- Infrastructure
 - Reduced conveyance capacity and freeboard, panel damage; water surface and liner misalignment; erosion/deposition in unlined channels
 - Roads, rails, bridges, pipelines, wells, etc
- Natural resources
 - Reduced aquifer-system storage capacity
 - Impacts to wetland, riparian, and aquatic ecosystems

Measuring Land Subsidence

We measure land subsidence using a variety of methods.

Simulation and Prediction Land Subsidence

Several methods have been developed to simulate and predict land subsidence.

- "Aquifer drainage" models based on Terzaghi theory
- Poroelasticity models based on Biot theory
- Empirical and artificial intelligence methods

The most widely used method is the "aquifer drainage" model developed by Riley (1969) and based on Terzaghi's (1923) principle.

Many tools are used for the numerical simulation of land subsidence:

- Interbed Storage Package (IBS)
- Subsidence and Aquifer-System Compaction Package (SUB)

I. BACI

Key parameters for Simulation and Prediction Land Subsidence

- elastic skeletal storage coefficient (S_{ke})
- inelastic skeletal storage coefficient (S_{kv})
- or elastic (S $_{\rm ske}$) and inelastic (S $_{\rm skv}$) skeletal-specific storage

Elastic: can recoverable when aquifer pressure returns to initial values.

Inelastic: can not be recoverable

Storage coefficient is the volume of water an aquifer releases per unit area per unit drop in water level.

Specific storage is the volume released from storage per unit volume of aquifer per unit drop in the head.

How to estimate the storage parameters

The conventional methods used to estimate: laboratory experiments or pumping tests.

However, obtaining soil samples from deep layers and pumping tests is difficult.

These parameters have been estimated by long-term processing deformation and hydraulic head records.

Previous hydrogeological studies were mainly focused on characterizing average elastic and inelastic values for complex aquifer systems based on the assumption of yearly and seasonal behavior.

However, elastic deformation may not be seasonal, especially in human-influenced.

This paper estimates the parameters by separating elastic and inelastic subsidence at various depths and over time from piezometric and extensometer data.

II. INTRODUCTION

Study Area: in North China Plain (Beijing, Tianjin, Hebei, Henan, and Shandong provinces)

Piezometric and extensometer data from 3 stations:

- Tianzhu
- Pinggezhuang
- Cangzhou

Stations location, Deformation rate in study area

II. INTRODUCTION

Extensometers, piezometers, lithology in the study area

III. METHODOLOGY

Step 1. Provide a theoretical basis for separating elastic and inelastic deformation

Hydraulic head change \rightarrow elastic and/or inelastic deformation (Terzaghi).

Elastic deformation: Hydraulic head > Hydraulic minimum historical head

Inelastic deformation: Hydraulic head < Hydraulic minimum historical head

The actual value of the hydraulic minimum historical head is updated as the hydraulic head exceeds the historical minimum.

III. METHODOLOGY

Step 2. Separating Elastic and Inelastic deformation components

Function:

 $\begin{aligned} \mathbf{x}(t) &= A^* \mathbf{s}(t) \\ \text{where } \mathbf{x}(t) &= [\mathbf{x}_1(t), \mathbf{x}_2(t), \cdots, \mathbf{x}_m(t)]^T &: \text{Observed signal matrix composed of m} \\ \mathbf{s}(t) &= [\mathbf{s}_1(t), \mathbf{s}_2(t), \cdots, \mathbf{s}_n(t)]^T &: \text{Source signal matrix composed of n} \\ \text{independent source signals} \\ \text{A} &: \text{matrix of m × n dimensions} \\ \mathbf{t} &: \text{time} \end{aligned}$

III. METHODOLOGY

Step 3. Estimation storage parameters

$$egin{aligned} S_{ke} &= rac{\Delta b_e}{\Delta h_e} \ S_{kv} &= rac{\Delta b_v}{\Delta h_v} \ S_{ske} &= rac{S_{ke}}{b_0} \ S_{skv} &= rac{S_{kv}}{b_0} \end{aligned}$$

S_{ke}: elastic skeletal storage coefficient S_{kv}: inelastic skeletal storage coefficient Δb_e : elastic deformations Δh_e : hydraulic head (elastic) Δb_v : inelastic deformation Δh_v : hydraulic head (inelastic)

 S_{ske} : elastic skeletal-specific storage S_{skv} : inelastic skeletal-specific storage b_0 : aquifer thickness

Land subsidence had characterized by three behaviors: elastic, elastic-inelastic, and inelastic

The residual deformation is low, revealing almost elastic behavior

Several hysteresis loops and large residual deformation indicate occurs elastic-inelastic

The residual deformation is large, but there is no hysteresis loop, indicating that mainly inelastic deformation occurs

The correlations between deformation and hydraulic head acting on deformation.

Elastic

Inelastic

The results estimated by this paper's method are similar to the traditional linear fitting method.

Linear fitting method

Paper's method

Elastic skeletal storage coefficient of each layers varies over time

Tianzhu station

Cangzhou station

The inelastic skeletal storage coefficient of each layer decreases clearly over time.

Tianzhu station

Cangzhou station

Storage parameters were estimated for the various depth layers at 3 extensometer stations in the North China Plain.

Number of layers	Lithology	Depth (m)	Thickness (m)	Deformation type	S _{ke}	S _{kv}	$S_{ske} (m^{-1})$	S _{skv} (m ⁻¹)	$S_{\rm ske}/S_{\rm skv}$
TZ:148.49-218.89	Silt, Fine sand	148. 4 9–218.89	70.4	Elastic-inelastic	$\underset{4}{2.5\times10^{\circ}}$	$1.6 imes 10^{-3}$	$\underset{_6}{3.5\times10^{\circ}}$	$\underset{\scriptscriptstyle 5}{\overset{2.2\times10}{}}$	0.16
TZ:117-148.49	Silt, Coarse sand	117-148.49	31.89	Elastic-inelastic	$\underset{4}{3.7\times10^{\circ}}$	$rac{2.6 imes 10^{\circ}}{3}$	$\underset{\tt 5}{\overset{1.2\times10}{}}$	$\underset{\mathtt{5}}{\overset{8.1\times10}{}}^{\scriptscriptstyle \circ}$	0.14
TZ:82.3-102	Silty clay, Fine sand	82.3-102	19.7	Elastic-inelastic	$\underset{4}{1.4\times10^{\text{-}}}$	$3.0 imes 10^{-3}$	$7.3 imes 10^{-6}$	$1.5 imes 10^{-4}$	0.05
TZ:48.5-64.5	Fine sand, Coarse sand	48.5–64.5	16	Elastic	$4.6 imes 10^{-4}$	-	$2.9 imes 10^{-5}$	_	-
PGZ:233.5-300	Sand, silty clay	233.5-300	66.5	Elastic-inelastic	$\underset{4}{1.7}\times10^{\text{-}}$	$7.2 imes 10^{-4}$	$\underset{_6}{2.5\times10^{\circ}}$	$\underset{\tt 5}{\overset{1.1}{\scriptstyle \times 10^{\circ}}}$	0.23
PGZ:119.64-208.8	Clay	119.64-208.8	89.16	Inelastic	-	$3.0\times10^{\rm -}_{\rm 3}$	-	$\begin{array}{c} \textbf{3.3} \times \textbf{10}^{\text{-}} \\ \textbf{5} \end{array}$	-
PGZ:63.1-119.64	Sand, silty clay	63.1-119.64	56.54	Elastic-inelastic	$4.5 imes 10^{-4}$	$3.5 imes 10^{-3}$	$\underset{_6}{8.0\times10^{-}}$	$6.2 imes 10^{-5}$	0.13
PGZ:31.9-63.1	Silty clay, silty fine sand	31.9–63.1	31.2	Elastic	$6.8 imes 10^{-4}$	-	2.2×10^{-5}	-	-
CZ:195.5-252.8	Silty sand, Silty fine sand, Silty clay	195.5-252.8	57.3	Elastic-inelastic	$\frac{1.7 \times 10^{-3}}{3}$	$\substack{\textbf{4.1}\times\textbf{10}^{\text{-}}\\\textbf{3}}$	$\underset{\scriptscriptstyle 5}{\overset{2.9\times10}{}}$	$7.2 imes 10^{\circ}$	0.40
CZ:68.3-195.5	Clay, Silty fine sand	68.3–195.5	127.2	Elastic-inelastic	$9.0 imes 10^{-1}$	$1.5 imes 10^{-1}$	$7.1 imes 10^{\circ}$	1.2×10^{-1}	0.06

V. CONCLUSIONS

- This paper proposes a novel methodology integrating Fast-ICA and a variable hydraulic minimum history head to unravel elastic and inelastic specific storage in confined aquifer systems.
- This method can effectively separate soil deformation's elastic and inelastic components.
- The relations between the storage parameters and depth, lithology, and time are explored.
- Lithology and depth control the values of storage parameters, and at different aquifer systems, they generally decrease with depth.

Thanks for your attention