Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations

Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. Tectonophysics 692 (2016): 241-251.

Adviser : Wen-Jeng Huang Speaker : Liang-Jie Yuan Date : 2023/01/06

Outline

- Introduction
- Methods & Results
- Discussion
- Conclusions

- The stress accumulated will cause the high surface shortening rate. Southwest Taiwan has the high contraction rate of $\sim 1.0 \,\mu strain/yr$.
- The area with seldom earthquakes usually accumulates high seismic strain. Therefore does it mean a large earthquake being coming in southwest Taiwan in the near future?
- Is this high strain being accommodated by the development of mud diapir with low potential for major seismicity?

Introduction

Geological background and study area

Campaign-Mode GPS

Campaign-Mode GPS

- 106 GPS stations data from 2002 to 2010.
- Each session is record 6 to 14 hours and all available satellites are tracked.
- Elevation angle rising higher than a 15° .
- The sampling interval for data logging is 15 second.

Campaign-Mode GPS

Data Processing

- Bernese software v.5.0 to obtain the precise station coordinates.
- The precise ephemerides provided by International GNSS Service (IGS) were employed and fixed during the processing.
- The horizontal uncertainties of station coordinates are estimated to be 2 \sim 5 mm.

Horizontal velocities relative to the station S01R at the Penghu Island

Precise Leveling

(YU, 1989)

Precise Leveling

- Two CGS precise leveling lines was repeatedly surveyed 6 times from 2004 to 2010. Two E–W trending precise leveling routes spacing of ~ 1 km.
- The first CGS leveling transect is 91 km length and crosses the northern side of Takangshan hill from Luzhu (蘆竹) to Maolin (茂林).
- The second CGS leveling transect is 50 km length and crosses the southern side of Hsiaokangshan hill from Kangshan (岡山) to Anpo (安坡).

Precise Leveling

Data Processing

- The leveling data were mostly collected at night by Zeiss DiNi-12 digital leveling instruments.
- The systematic errors of various kinds were calculated and removed from the measurements.

Fault parameters

Table 1

Fault parameters of profiles AA' and BB'.

Fault name	Profile AA'					
	Dip angle (°)	Depth (km)	Locking depth (km)	Location (km)	Slip rate (mm/yr)	Rake (°)
HKSF CHNF Décollement	52.9 ± 4.1 63.8 ± 8.5 ~0	6.2 ± 0.1 6.7 ± 0.1	2.3 ± 0.2 3.6 ± 1.8	6.7 ± 0.2 21.0 \pm 1.1	$\begin{array}{c} 24.3\pm1.6\\ 1.1\pm0.9\\ 25.3\pm1.5\end{array}$	$\begin{array}{c} 107.9 \pm 2.1 \\ 133.2 \pm 8.2 \\ 109.2 \pm 1.9 \end{array}$
	Profile BB'					
HKSF CHNF Décollement	34.0 ± 2.5 74.9 ± 6.4 ~0	6.1 ± 0.1 6.7 ± 0.1 -	1.9 ± 0.2 5.8 ± 0.5	5.6 ± 0.3 18.2 ± 0.8 -	$\begin{array}{c} 14.4 \pm 0.8 \\ 8.4 \pm 0.3 \\ 22.8 \pm 0.8 \end{array}$	$\begin{array}{c} 133.6 \pm 3.7 \\ 96.7 \pm 3.7 \\ 120.9 \pm 2.3 \end{array}$

HKSF: the Hsiaokangshan fault; CHNF: the Chishan fault.

$$RMS = \sqrt{\frac{(As - data)^2}{dof}}$$

- A = Green's function from Okada (1985)
- s = slip rates on faults
- data = observed velocities
- dof = degree of freedom

Locations of the two profiles

16

B-B' profile

17

Discussion

Discussion

Stereonet

n = 113;trend and plunge of fold axis = 028/02

black poles = Eastern region, n = 22blue poles = western region, n = 11red poles = northern region, n = 3

Mud Diapir cause the uplift ?

Discussion

High earthquake potential in SW Taiwan ?

High earthquake potential in SW Taiwan ?

- A high velocity gradient of ~15 mm/yr between the HKSF and the CHNF.
- High strain rates at the mudstone region of the Gutingkeng formation may not directly imply the accumulation of the seismic moment.
- The short-term uplift rates inferred in our study are very close to the longerterm uplift rates that are observed near the HKSF with the vertical velocities of ~ 5 mm/yr.

- The geodetic data does not fit the 2D dislocation model well. Therefore another mechanism must be considered in the result.
- In terms of our field investigations, the Gutingkeng formation has been rising relative to surrounding geologic units, which is interpreted as an onshore mud diapir dominated by vertical tectonics.
- The CHNF or the décollement here still has the possibility to generate destructive earthquakes in SW Taiwan in the future.

Thanks for your attention ~

Precise Leveling

- First, the maximum permissible difference in sight lengths between forward and backward sights is 0.5 m per set-up, and the cumulative difference is limited to 1.5 m per section.
- Second, the maximum length of sight is restricted to 30 m for greatly reducing the influence of atmospheric refraction. The minimum and maximum sight ground clearances are 0.3 m and 2.7 m, respectively.
- Third, the maximum standard deviation of each leveling reading in a set-up is ± 0.2 mm.
- Finally, the maximum difference of the two height differences from the double readings at a set-up is limited to 0.4 mm. Besides, the maximum misclosure between forward and backward runs in a section is limited to $\pm 2.0 \text{ mm } \sqrt{k}$ (k being the section distance in km).

Campaign-mode GPS

Horizontal velocity field

$$\boldsymbol{x}_n^i(t) = \boldsymbol{a}_n^i + \boldsymbol{b}_n^i t + \boldsymbol{v}_n^i$$

 $x_n^i(t)$: observed displacement of each station

- t : units of year
- a_n^i : linear velocity of the station
- b_n^i : intercept
- v_n^i : residual

Precise Leveling

Vertical velocity field

Posterior probability distributions for the inversion of 2-D fault model in AA' profile

Posterior probability distributions for the inversion of 2-D fault model in BB' profile