Analytical solutions of tidal groundwater flow in coastal two-aquifer system

Hailong Li,2002, Advances in Water Resources

Presenter:許安誼 An-Yi Hsu Advisor:倪春發 Chuen-Fa Ni

Table of contents

intrusion of marine coastal environment structures

To solve these problems, it is necessary to identify the coastal hydrogeological conditions

Coastal aquifer diagram

(Werner et al.,2013)

Introduction

This paper consider the **confining unit** is semipermeable, hereafter it will be referred to as **leaky layer** or **semipermeable layer**

Mathematical model

Basic assumption

- Each layer is **homogeneous** and horizontal
- This model have a clear-cut vertical water-land boundary
- Consider the vertical leakage between two aquifers

Groundwater flow governing equation :

Two aquifer Leaky layer

$$S_{j} \frac{\partial H_{j}}{\partial t} = T_{j} \frac{\partial^{2} H_{j}}{\partial x^{2}} \pm K' \frac{\partial h}{\partial z}\Big|_{Z=Z_{i}} (-\infty < t < \infty, x > 0, j = 2, 1)$$

Leaky layer's governing equation:

$$s_s'\frac{\partial h}{\partial t} = K'\frac{\partial^2 h}{\partial z^2}$$

h:groundwater head K':vertical permeability Z:thickness j=1:upper aquifer j=2:lower aquifer

S:storativity T:transmissivity H:hydraulic head h:groundwater head K':vertical permeability z:thickness s'_s :specific storativity of leaky layer

Water-land boundary

$$H_i(0,t) = A\cos(\omega t), j = 2,1$$

Definition of basic parameters:

• Buffer capacity θ of the leaky layer:

$$\theta = b' \sqrt{\frac{\omega s'_s}{2K'}}$$

K':vertical permeability of leaky layer s'_s :specific storativity of leaky layer b': thickeness of leaky layer ω : tidal frequency

Solutions when B1=B2=B

• When B1=B2, it's means that the upper and lower aquifers received the same tidal interference

10

Li and Jiao solution

Comparison with Li and Jiao solution

- Prior solution use 6a $\lambda_1 \neq \lambda_2$ ($\theta > 0$)
- Li and Jiao's solution use

18a

Conclusions

- This paper presents an **analytical** solution
- The system can be simplified into an equivalent aquifer-aquitard double-layered system bounded by impermeable layers from up and down
- The buffer capacity increases with the leaky layer's thickness, specific storage, and decreases with the leaky layer's vertical permeability.
- If the buffer capacity increase, the tidal wave interference between the two aquifers will decline quickly

Future work

 Because of the deterioration of marine environment, it is necessary to identify the groundwater flow's direction

Future work

Thank you for listening

$$H_1(x,t) = H_2(x,t) = A \operatorname{Re}[\exp(-x\sqrt{B^2 - \varepsilon + i\omega t})]$$

if $B_1 = B_2 = B.$ (9)

