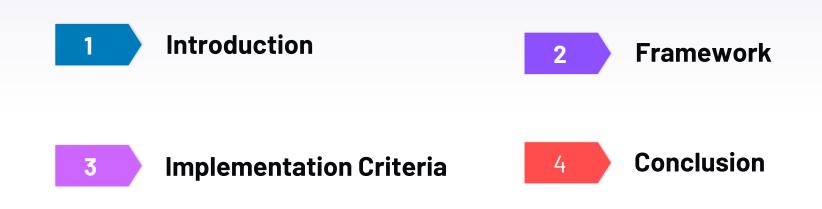




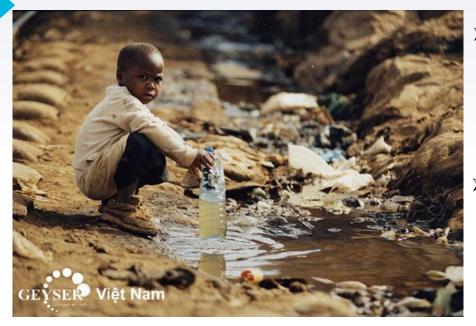
# Managed aquifer recharge implementation criteria to achieve water sustainability

Author: Sarfaraz Alam, Annesh Borthakur, Annesh Borthakur, Mekonnen Gebremichael,


Sanjay K. Mohanty.

Paper published in Science of The Total Environment, 2021

Presenter: Duc Truong Huu

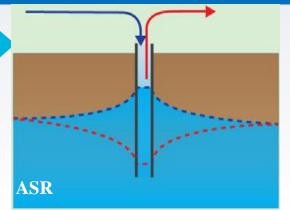

Advisor: Prof. Shih-Jung Wang



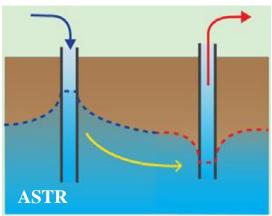




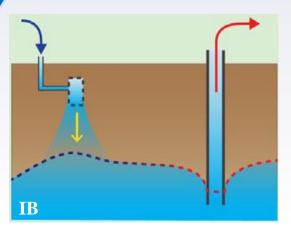
#### Introduction



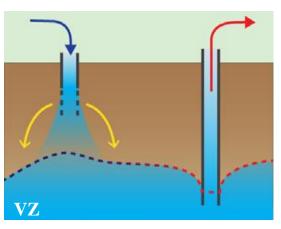

Due to growing water demand for use in urbanized areas, agriculture, the energy industry, and declining surface water under climate change, groundwater depletion is expedited.


Managed aquifer recharge (MAR) is one of the several methods that can help achieve long-term water sustainability by increasing the natural recharge of groundwater reservoirs with water from non-traditional.

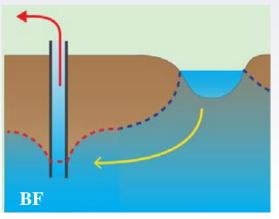
This study analyzed 1127 MAR projects with various research topics and highlights several key components to make a successful MAR project.


### Introduction

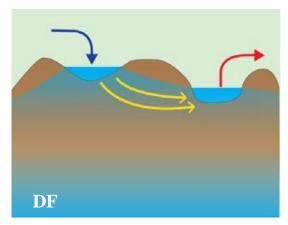



Aquifer storage and recovery



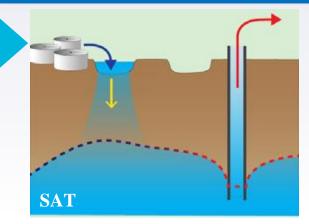

Aquifer storage transport and recovery



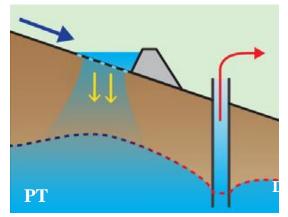

Infiltration basin



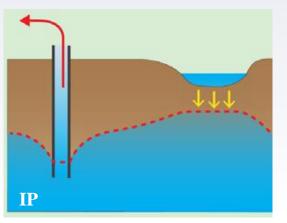
#### Vadose zone infiltration



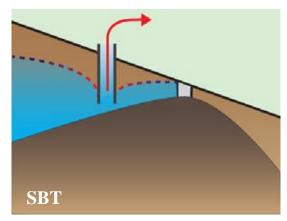

**Bank filtration** 



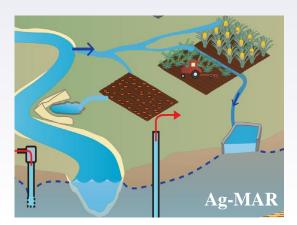

**Dune filtration** 


### Introduction

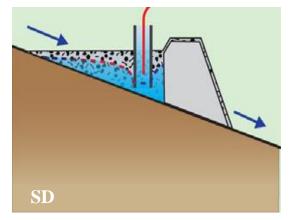



Soil-aquifer treatment

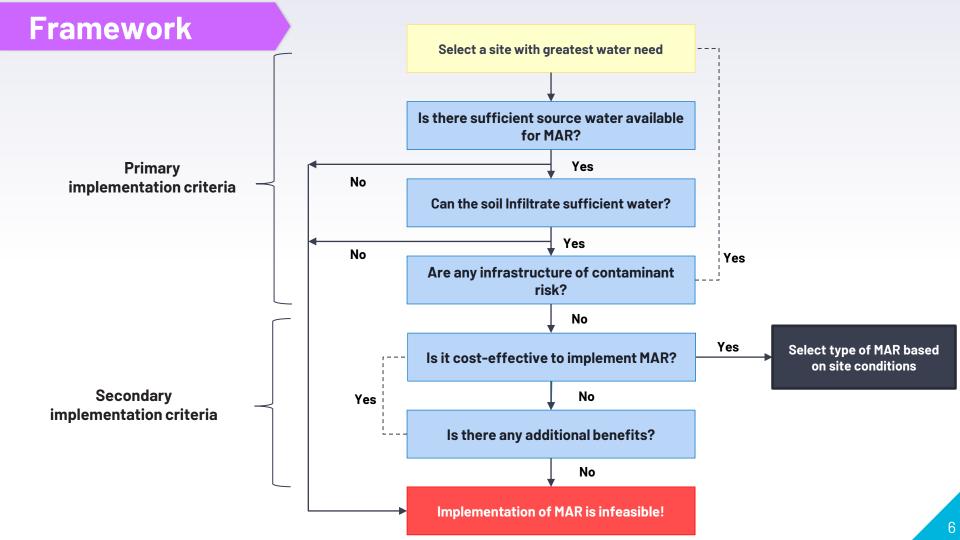



**Percolation tanks** 

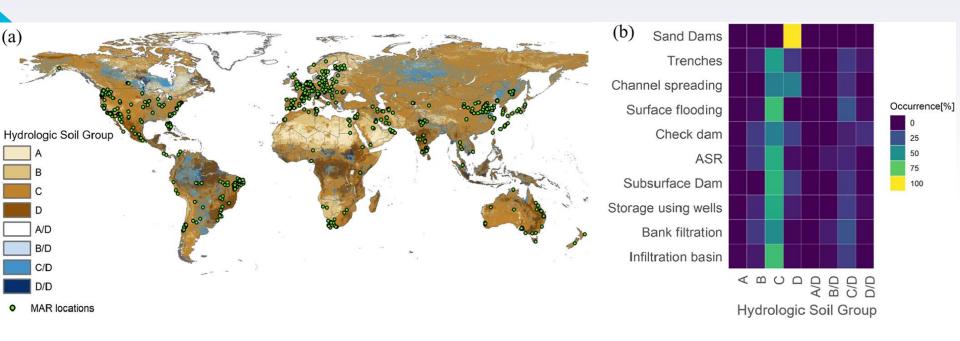



Infiltration ponds



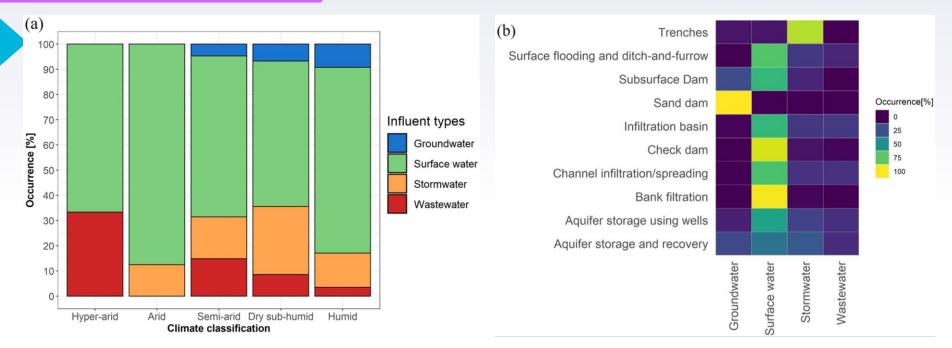

#### Sub-surface dam




#### **Agriculture MAR**

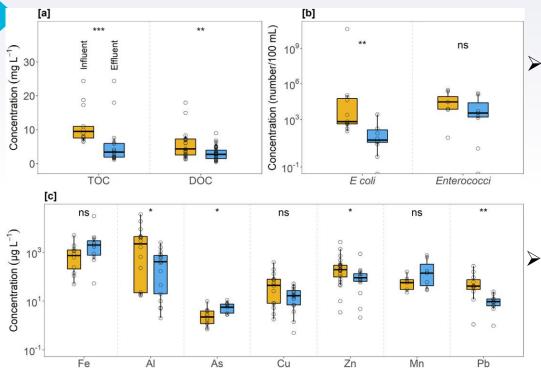


Sand dam




#### **Soils properties**



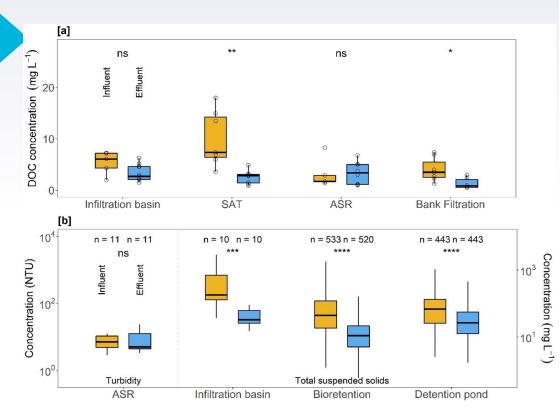

Based on soil grain size distribution, soils can be classified into four major Hydrologic Soil Groups (HSG): HSG-A (>90% of sand), HSG-B (50–90% sand and 10–20% clay), HSG-C (<50% sand and 20– 40% clay), and HSG-D (<50% sand and >40% clay). (NRCS,1996)

#### Types of water and climate conditions



- The climate and water available affected the purpose and type of MAR; the type of MAR should be used based on the site's source water.
- Source water types are a critical choice for the specific type of MAR due to differences in the contaminant removal capacity of MAR technologies.

#### **Quality of water**




MAR has been particularly effective in reducing the concentrations of total organic carbon (TOC), E. coli, and heavy metals such as Aluminium, Zinc, and lead from stormwater

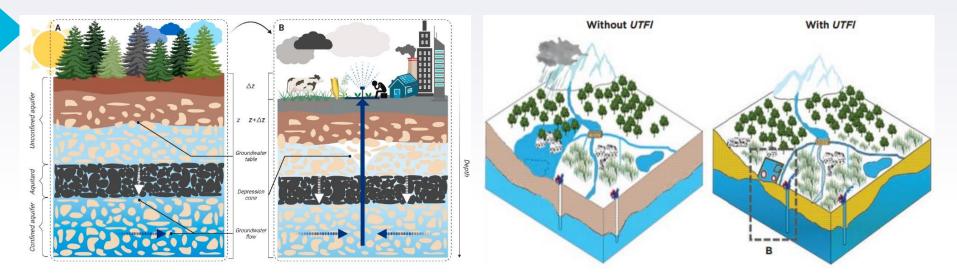
 MAR can be applied in regions where the disposal of stormwater and wastewater to surface waters creates environmental concerns

Changes in the concentration of pollutant elements under the effects of 33 MAR projects (used stormwater)

#### **Quality of water**



➤ The ability of MAR to remove contaminants varies on the types of MAR and pollutants; poor application might result in groundwater contamination.


Pollutant types in source water and aquifer redox condition must be considered to minimize groundwater pollution risk.

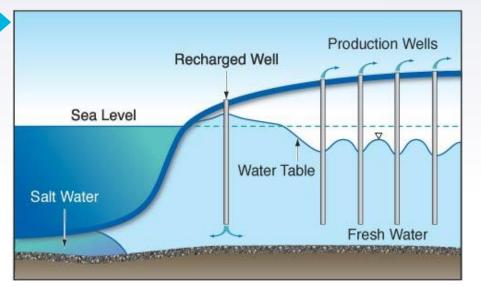
The dissolved organic carbon and suspended sediments removal efficiency of different MAR types

Selection of specific MAR based on on-site physical characteristics.

| Condition               |                       |                                        |                                   |                                                    |                                      | Recommendation                          |
|-------------------------|-----------------------|----------------------------------------|-----------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------|
| Recharge site land use  | Water<br>availability | Aquifer soil property <sup>1</sup>     | Topographic<br>slope <sup>2</sup> | Surface soil layer condition                       | Source water<br>quality <sup>3</sup> | MAR type<br>recommendation <sup>4</sup> |
| Open land               | Medium to high        | Sy: moderate to high                   | Low                               | High infiltration rate                             | Good                                 | IB, ASR, VZ, PT                         |
|                         | _                     | K: moderate to high                    |                                   |                                                    | Poor                                 | IB, SAT, VZ, PT                         |
|                         |                       |                                        |                                   | Low infiltration rate                              | Good                                 | ASR                                     |
|                         |                       |                                        |                                   |                                                    | Poor                                 | Do not implement                        |
|                         |                       | Sy: moderate to high                   | Low                               | Any                                                | Good                                 | ASR, VZ, PT                             |
|                         |                       | K: Low K of subsurface                 |                                   | -                                                  | Poor                                 | VZ, PT                                  |
| Agriculture             | Medium to high        | Sy: moderate to high                   | Low                               | Any                                                | Good                                 | SFD, Ag-MAR                             |
|                         |                       | K: moderate to high                    |                                   |                                                    | Poor                                 | Do not implement                        |
| River channel           | High                  | Sy: low to high<br>K: moderate to high | Moderate to low                   | NA                                                 | Any                                  | CIS, BF                                 |
|                         | Low to medium         | Sy: moderate to high                   | Moderate to low                   | High infiltration rate                             | Any                                  | Do not implement                        |
|                         |                       | K: moderate to high                    |                                   | Low infiltration rate                              | Any                                  | CSD                                     |
| Urban                   | Medium to high        | Sy: moderate to high                   | Low                               | Any                                                | Good                                 | BMP, PT, IB                             |
|                         |                       | K: moderate to high                    |                                   |                                                    | Poor                                 | BMP, PT, IB                             |
| Forest, Impervious land | No water              | Sy: very low<br>K: Very low            | High                              | High sodium causing soil crust<br>Prone to erosion | NA                                   | MAR is not feasible.                    |

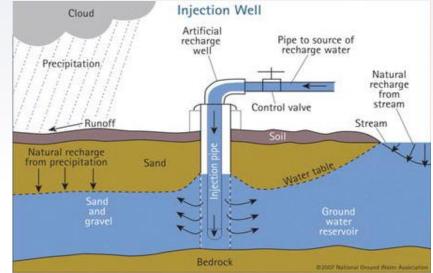
### Secondary Criteria




#### Minimizing land subsidence

When groundwater extraction exceeds the natural recharge, the empty pore collapse under stress, irreversibly lowering the storage capacity of the aquifer (Smith et al., 2017)

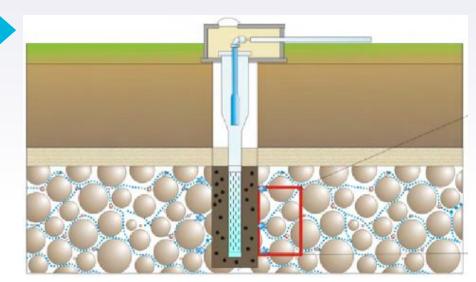
#### Mitigating flood risk


MAR basins provide temporary storage to flood water and reduce the flood peak, timing, and variability by diversion river flow (Chinnasamy et al., 2018; Yaraghi et al., 2019).

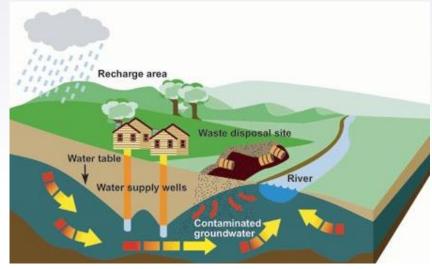
### Secondary Criteria



#### Minimize salt-water intrusion


MAR can reduce the salinity of groundwater by injecting surface water, stormwater, and wastewater (ElRawy et al., 2019; Russo et al., 2015)




#### Augment low dry-season flow

 MAR can effectively raise groundwater level (and baseflow) by diverting excess flood water into the aquifer (Barber et al., 2009; Ronayne et al., 2017).

### Challenges



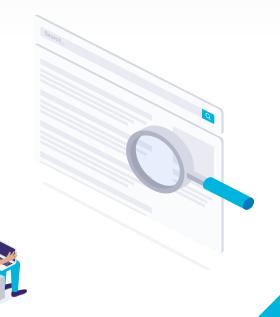
#### (HuanWang,2020)



<sup>(</sup>Samer Talozi, 2016)

#### Clogging and crop damage

 Clogging can occur due to the deposition of suspended sediments in the source water and compaction of the soil layer that permits filtration


#### **Groundwater contamination**

 A site that permits rapid infiltration of source water can increase the risk of groundwater contamination

### Conclusions

- 1. MAR has been implemented predominantly in sites with **hydrologic soil group C (sandy clay loam soil)** and water available for recharge.
- 2. MAR can **remove pollutants**, but the removal efficiency can vary with **MAR design and site conditions**. Depending on the type of pollutants and MAR technology, pretreatment of the recharge water or post-treatment of the recovered water may be necessary before its usage.
- 3. MAR implementation could provide additional benefits, including reducing saltwater intrusion into the groundwater, land subsidence mitigation, and drought mitigation strategy, which could lower the cost of MAR per benefits they provide at a site.

## Thanks for your attention



#### Equation

Water Infiltration Darcy's Law (Saturated conditions) Q = - KAdh/dlA = application area for MR, dh/dl = change in head per unit depth, K = hydraulic conductivity Green Ampt equation (Unsaturated conditions)  $F(t) - |\varphi| \Delta \theta ln \left( \left| 1 + \frac{F(t)}{|\varphi| \Delta \theta} \right| \right) = Kt$   $F(t) = \text{cumulative depth of infiltration } \theta = \text{water}$ content, K = hydraulic conductivity,  $\varphi$  = wetting

Storage Groundwater storage change (water balance method)  $\Delta GW = P + Q_{in} - \Delta SM - \Delta SWE - Q_{out} - ET - \Delta SW$ where  $\Delta GW =$  groundwater storage change, P = precipitation,  $Q_{in}$  and  $Q_{out}$  = surface water inflow and outflow,  $\Delta SM$  = soil moisture change,  $\Delta SWE$  = snow water equivalent change, ET = evapotranspiration,  $\Delta SW$  = surface water storage change

front pressure head

Contaminant transport Advection-diffusion equation:  $\frac{\partial C}{\partial t} + \frac{1-n}{n} \frac{\partial F}{\partial t} = -v \frac{\partial C}{\partial x} + D_h \frac{\partial^2 C}{\partial x^2} - \mu C + \gamma$  *C* = Contaminant concentration, *v* = water velocity, *n*= porosity, *F* = contaminant concentration in solid phase, *D<sub>h</sub>* = hydrodynamic dispersion,  $\mu$  = first order decay constant,  $\gamma$  = zero order production constant (Das and Singh, 2019)

| Sorption | Freundlich isotherm (assuming high sorption<br>capacity):                  |  |  |
|----------|----------------------------------------------------------------------------|--|--|
|          | $C_s = K_f C_w^{1/n}$                                                      |  |  |
|          | C <sub>s</sub> and C <sub>w</sub> are pollutant concentrations in soil and |  |  |
|          | water at equilibrium, respectively.                                        |  |  |
|          | $K_f$ , n are constants. For $n = 1$ , it becomes a linear                 |  |  |
|          | isotherm.                                                                  |  |  |
|          | Langmuir isotherm (assuming exhaustion of                                  |  |  |
|          | sorption sites):                                                           |  |  |
|          | $C_s = \frac{Q_0 K_L C_w}{1 + K_L C_w}$                                    |  |  |
|          | $Q_0, K_L = \text{constants.}$                                             |  |  |