The effects of inherent distribution of discontinuities and stress-induced anisotropy on pore water pressure distribution of rock slope.

Presenter: Chia-Yi Liu Advisor: Jia-Jyun Dong Date: 2023/02/24

Slope stability analysis

Source: https://www.nasc.gov.tw

Source:https://twgeoref.moeacgs.gov.tw/GipOpenWeb/w Site/ct?xItem=140858&mp=105&ctNode=1233

Source: https://www3.nd.edu/~cneal/planetearth/Lab-Structural/DipStrike.html

A dip slope is described as a rock slope with layered structures stretching along its inclined direction.

Dip slopes in the form of a sandstone and shale interlayer are a typical geological feature in northern Taiwan.

Slope stability analysis(Duncun, 2004)

D Numerical analysis can examines the stresses and strains developed in the slope.

□ The final target is calculating the factor of safety(fos) of the slope.

- Fos > 1, safe
- Fos ≤ 1, unsafe

Purpose

Flow chart

Methodology

7

- Model setting
- Continuum approach

Continuum approach

Continuum approach

Results

- ① Uniform stress(0.25MPa) field
- The distribution of discontinuities
- **②** Non-uniform stress field
 - The distribution of discontinuities

Slope stability analysis (shear strength reduction)

- Factor of safety
- Strain increments

Pore pressure distribution

Results

① Uniform stress(0.25MPa) field

The distribution of discontinuities

(Equivalent permeability tensor, pore water pressure variation and factor of safety)

The results of equivalent permeability tensor (under uniform stress field, 0.25MPa)

Initial result •

⁽The different level of anisotropic for discontinuities)

The distribution of discontinuities

The results of equivalent permeability tensor (under uniform stress field,0.25MPa)

Initial result

(The different level of anisotropic for discontinuities)

The distribution of discontinuities

The results of pore water pressure distribution (under uniform stress field)

Initial result

(no influence by the distribution of discontinuities)

Zone Gridpoint Pore Pressure (Pa) Cut Plane: on 1.5000E+05 1.4000E+05 1.3000E+05 1.2000E+05 1.1000E+05 1.0000E+05 9.0000E+04 8.0000E+04 7.0000E+04 6.0000E+04 5.0000E+04 4.0000E+04 3.0000E+04 2.0000E+04 1.0000E+04 0000F+00

The distribution of discontinuities

The number of strike joints are more then dip joints

(The different level of anisotropic for discontinuities)

The variation of pore water pressure distribution

The relatively variation

The variation of slope stability analysis

Results

Non-uniform stress field

The distribution of discontinuities

(Equivalent permeability tensor, pore water pressure variation and factor of safety)

The results of equivalent permeability tensor (under non-uniform stress field)

Initial result

• The distribution of discontinuities

The variation of pore water pressure distribution

The relatively variation

The variation of slope stability analysis

5.0000E-02 2.5000E-02

1.2000E-04

Conclusions

Conclusions

- Considering the inherent distribution of discontinuities (under uniform stress field)
 - Comparing the pore water pressure distribution on rock slope between different level of anisotropy for discontinuities under uniform stress field.
 - > The variation up to 52%.
 - For factor of safety, the level of anisotropy for discontinuities increase, the factor of safety decrease.
 The influence due to the distribution of discontinuities.
- Considering the inherent distribution of discontinuities and stress-induced anisotropy (under non-uniform stress field)
 - Comparing the pore water pressure distribution on rock slope between different level of anisotropy for discontinuities under nonuniform stress field.
 - \succ The variation up to 51%.
 - For factor of safety, the level of anisotropy for discontinuities increase, the factor of safety increase.

The influence due to the stress field.

Thank you for your attention!

24

Results

① The stress-induced anisotropy

• Uniform stress field(0.25MPa)

Non-uniform stress field

(Equivalent permeability tensor, pore water pressure variation and factor of safety)

The results of equivalent permeability tensor

• Uniform stress field(0.25MPa)

Non-uniform stress field

Homogeneous & isotropic permeability tensor
Maximum principal permeability is parallel to the slope surface

- Principal permeability tensor Scale: 2e+08 Color By Order Intermediate Maximum Minimum
 - $\left(\frac{m^2}{Pa * sec}\right)$

- □ Nonhomogeneous & anisotropic permeability tensor
- Maximum principal permeability is parallel to the slope surface
- □ Depth ↗, the permeability tensor ↘

The results of pore water pressure distribution

Uniform stress fi

Zone Gridpoint Pore Pressure (Pa) Cut Plane: on 1.5000E+05 1.4000E+05 1.3000E+05 1.2000E+05 1.1000E+05 1.0000E+05 9.0000E+04 8.0000E+04 7.0000E+04 6.0000E+04 5.0000E+04 4.0000E+04 3.0000E+04 2.0000E+04 1.0000E+04 0.0000E+00

Zone Specific Dischar Cut Plane: on Maximum: 2.83927¢ Scale: 100000 →

• The relatively variation of pore water pressure (nonuniform stress - uniform stress)/uniform stress Pore pressure variation(%)

stress field

The results of slope stability analysis

• Uniform stress field(0.25MPa)

• Non-uniform stress field

Same value of factor of safety
Same distribution of maximum principal strain increment
It's no significant influence under this situation.

Future work

Bouwer and Rice Method (Bouwer and Rice, 1976)

00:00

12:00

24:00

TIME, Minute:Second

36:00

48:00

30