

National Central University

Determination of Structural Characteristics of the Chusiang Active Fault Using Geological Cross-Sections 利用地質剖面探討初鄉活動斷層構造特性

Presenter : Chung-Wei Chang

Advisor : Wen-Jeng Owen Huang

Data: 2023/03/10

OUTLINE

- Introduction
- 1999 ChiChi Earthquake & Geological setting
- Motivation & Purpose
- Structural Cross-Sections
- Results
- Discussion
- Conclusions

INTRODUCTION

1999 Chi-Chi earthquake

- The block between the Shuangtung fault and the Chelungpu fault has the largest displacement (CGS, 1999).
- The GPS horizontal displacements have changed significantly across the Chusiang fault (Lee et al., 2003).
- No relative uplift and surface ruptures along the Chusiang fault (Lin et al., 2000).

5,000 Meters

(Modified from CPC geomap; Chen et al.,2013; Huang, 2022; GPS data from Yu et al., 2001 & Yang et al., 2000; Horizontal slip on surface rupture from Lee et al., 2003)

INTRODUCTION

Motivation & Purpose

- In the next 50 years, the Chusiang fault has a 37% chance of causing a magnitude 6.0 earthquake. (TEM, 2022)
- Debate for the interpretation of the seismic reflection profile along the Choushui River.

- To understand the geometric relationship between the Chusiang fault and the surrounding structures
- Activation of the Chusiang fault (during the 1999 ChiChi earthquake)

→ Construct Plausible Structural Cross-Sections

INTRODUCTION

Previous Structural Cross-sections

- North of Choushui River
 - Detachment 5-6 km (Much shallow than the south)

• Include the Chusiang Fault

• The interpretation is hard to connect to the north.

Seismic reflection profile along the Choushui River

STRUCTURAL CROSS-SECTIONS

Structural Cross-Sections

- Strata :
 - The changing thickness of the formations
- Structures :
 - The geometry of the faults
 - The angle of detachment
- → Geological map & Boreholes & Seismic reflection profiles & Coseismic GPS displacements
- Method :
 - Kink method
 - Balancing cross-sections

STRUCTURAL CROSS-SECTIONS

Method

- Kink method •
 - The Chelungpu thrust shows a classic fault-bend folding geometry. ٠ The bending of the fault plane at depth results in a monoclinal kink-shape in the strata of the hanging wall (Yu et al., 2011; Lai et al., 2006).
 - Suitable for areas where the state changes rapidly in a short ٠ distance (Marshak & Mitra, 1988).

Restoring and Balancing cross-sections

Cross-sections

DISCUSSION

Chelungpu detachment model

• YY' profile and BB' profile have the detachment in different depth. (5-6km and 10km)

 \rightarrow How to connect the YY' profile and BB' profile ?

The two segments of the detachment may have different behavior.

 \rightarrow The Chusiang Fault adjusts the different offsets between the Chelungpu Fault and the Tachienshan Fault in two segments of the detachment.

CONCLUSIONS

- Based on the geological map and the cross-sections, the Chusiang fault merges with the Chelungpu fault at the deep detachment.
- The Chusiang Fault adjusts the different offsets between the Chelungpu Fault and the Tachienshan Fault in two segments of the detachment.
- During the 1999 Chichi earthquake, the Chelungpu fault brought up the hanging wall and the Chusiang Fault. (Non-relative deformation on both sides of the Chusiang Fault)

Thanks for your attention