111-2 Seminar

Evaluation of Groundwater Management level by Numerical Modeling in the Taipei Basin, Taiwan

Presenter: Yu An Chien

Advisor: Prof. Shih Jung Wang

Date: 2023.03.31

Introduction

✓ Therefore, effective groundwater resource management is crucial.

→ Land subsidence from 1963-1967

→ Hydraulic head in 1968

Groundwater decline has been a primary cause land subsidence
 Groundwater level increased caused engineering problems, such as soil liquefaction.

Introduction

Objective

mitigate the poten Groundwater management levels indwater resources

This study developed numerical models to quantify the groundwater level and land subsidence.

- To obtain a better understanding of a system, from the geological and hydrological points of view.
- ✓ To offer information for the design of a monitoring network or field experiments by predicting the system's future behavior. (*Bear and Cheng, 2010*)

Introduction

Background

Elevations lower than 20 meters

No-flow boundaries were assigned to the edge of the study area Constant head boundary (Dirichlet boundary condition)

Conceptual model

1D continuous-lag Markov chain model

- Markov chain models applied to time series assume, in theory, that future occurrences depend on the present and not on the past.
- This simple stochastic model can address spatial applications by replacing the time lag with a spatial lag h_{Φ} in a direction ϕ . (Krumbein, 1968; Agterberg, 1974, p. 457; Ross, 1993, p.290)

- $\succ R_{\mathbf{\Phi}}$ is a transition rate matrix
 - > $r_{jk,\phi}$ describing a conditional rate of change from material **j** to material **k** per lag in the direction ϕ .

$$R_{\phi} = \begin{bmatrix} r_{11,\phi} & \cdots & r_{1k,\phi} \\ \vdots & \ddots & \vdots \\ r_{k1,\phi} & \cdots & r_{kk,\phi} \end{bmatrix}$$

Diagonal \rightarrow self-transitional

 $\frac{\text{Off-diagonal}}{\rightarrow \text{transition rate}}$

1D continuous-lag Markov chain Methodology (Krumbein, 1968)

$$r_{jk} = \frac{\text{transition probability}(t_{jk})}{\text{Mean length}(\overline{L}_j)}$$

Sy differentiation of Eq. above with respect to *h* at *h* = 0, the transition rates are related to
Transition Probabilities by $\frac{\partial t_{jk}(0)}{\partial h_{cb}} = r_{jk,Z}$

1D continuous-lag Markov chain model

Ŋ

 \succ Transition probabilities $T(h_{\phi})$

$$\mathbf{T}(h_{\phi}) = \begin{bmatrix} t_{11}(h_{\phi}) & \cdots & t_{1K}(h_{\phi}) \\ \vdots & \ddots & \vdots \\ t_{K1}(h_{\phi}) & \cdots & t_{KK}(h_{\phi}) \end{bmatrix}$$

x spatial location h_{ϕ} lag along ϕ direction j, k material

x+h

$$t_{jk}(h_{\phi}) = \Pr\{k \text{ occurs at } \mathbf{x} + \mathbf{h}_{\phi} | j \text{ occurs at } \mathbf{x}\}$$

Methodology

Geological borehole data

Methodology

Random selection

11

Results

Geostatistical analysis

Lags

Results

Results

Conclusions

In this study, the transition probability in Markov chain approach was adopted to build the heterogeneous hydrogeological model.

- Future Work

- Combining the steady-state hydrological observation data with the hydrogeological model through MODFLOW packages.
- ◆ Several pumping scenarios will be proposed to evaluate the land subsidence. → **SUB package**

Methodology

MODFLOW

MODFLOW solves a distribution of hydraulic head in space and time

>Three-dimensional transient groundwater flow equation (McDonald and Harbaugh, 1988)

$$\frac{\partial}{\partial x} \left(\frac{K_{xx}}{\partial x} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{K_{yy}}{\partial y} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{K_{zz}}{\partial z} \frac{\partial h}{\partial z} \right) + W = S_s \frac{\partial h}{\partial t}$$

[L/T] hydraulic conductivity along the x, y, and z
[L] hydraulic head
[1/T] volumetric flux per unit volume (sources and/or sinks)
[1/L] specific storage

- Numerical solution
 - ≻Finite Difference (FD)

→Finite difference grid in Modflow