# CHARACTERIZATION OF FLOW DYNAMICS IN COASTAL AQUIFERS BASED ON HYDRAULIC TOMOGRAPHY.

Advisor: Prof. Chuen-Fa, NI Presenter: Yi-Jing, Chen



## OUTLINE

### 01 Introduction

- Background
- Objectives
- Work flow
- Study area
- 02 Methodology
  - Filed experiment
  - Lab experiment
  - VSAFT 2
  - Conceptual Model setup

- 03 Results and discussion
  - Pumping test result
  - Example profile
- 04 Future work



Submarine groundwater is richer then surface water, and has been considered to be an essential component of biological production in marine coastal ecosystems. (Fujita et al., 2019).

Submarine groundwater discharge (SGD) links land and marine systems, but has often been overlooked in coastal nutrient budgets because it is difficult to quantify (R. Santos et al., 2021).



■ Influenced by oceanic oscillation and inland head → Complex flow and transport process (Li et al., 2010).





 Combine hydrogeological and geophysical data allowed for the construction of a hydrogeophysical model of the multi-layered system(R. Di Maio, 2014).

 In some cases, core, slug, geophysical data may be collected and use to condition the inverse modeling results(A. Illman, 2007).





- Determining aquifer parameters (K) by field measurement and inversion.
- Using the inverse method to estimate the hydraulic conductivity distribution.
- Using field experiment data with different scales to compare the differences in inverse results.





| Σ                                                                                         | Introduction | Meth | nodology | Results & Di | iscussion | Future work |   |
|-------------------------------------------------------------------------------------------|--------------|------|----------|--------------|-----------|-------------|---|
| <s< td=""><td>ea</td><td></td><td></td><td></td><td></td><td>Land</td><td> &gt;</td></s<> | ea           |      |          |              |           | Land        | > |
|                                                                                           |              |      |          |              |           |             |   |

| Well<br>Number | Falling<br>Head<br>Test | Slug<br>Test | Single Well<br>Pumping Test | Multi-Well<br>Pumping Test | Cross-hole<br>Layered<br>Pumping Test |
|----------------|-------------------------|--------------|-----------------------------|----------------------------|---------------------------------------|
| BW01           | $\checkmark$            |              | $\checkmark$                |                            |                                       |
| BW02           |                         |              | $\checkmark$                | $\checkmark$               |                                       |
| BW03           |                         |              | $\checkmark$                | $\checkmark$               | $\checkmark$                          |
| BW09           |                         | $\checkmark$ | $\checkmark$                | $\checkmark$               | $\checkmark$                          |
| BW10           |                         | $\checkmark$ | $\checkmark$                | $\checkmark$               | $\checkmark$                          |
| BW11           | $\checkmark$            |              |                             | $\checkmark$               | $\checkmark$                          |





- Auto monitoring: 1 data/hour, 1 month, 5 wells.
- Purpose: set the boundary of the model.
- Due to the tidal period, the equipment at least set up for 1 month.











- Aquifer has infinite areal extent
- Aquifer is homogeneous, anisotropic and of uniform thickness
- Control well is fully or partially penetrating
- Diameter of a pumping well well is very small so that storage in the well can be neglected

Analysed by Theis solution.









Separate different layers to do the slug test : every 2 meters.







- Determine K Value.
- Choose a specific depth to do the experiment.







- VSAFT2 is a windows Graphical User Interface (GUI) for setting up, running and calibrating a variably saturated flow and transport finite element model (Yeh, et al., 1993) in two-dimensional.
- VSAFT2 now includes several geostatistical model setup features such as random field generation of input parameters.







## VSAFT 2



|                   | Mate | ial | Ksx                                               | Ksy      |  |
|-------------------|------|-----|---------------------------------------------------|----------|--|
|                   | Blac | k   | 1.57                                              | 1.57     |  |
|                   |      |     | Stress 1                                          | Stress 2 |  |
| BW09              |      |     | -48.096                                           | OBS      |  |
| BW10              |      |     | OBS -48.09                                        |          |  |
| BW11              |      | /   | OBS                                               |          |  |
| BW03              |      |     | OBS                                               |          |  |
| Grid              |      | -   | 35*30(row*col)                                    |          |  |
| Flow              |      |     | Steady State                                      |          |  |
| Material          |      |     | Heterogeneous                                     |          |  |
| Initial condition |      |     | Pressure head : 4.317m                            |          |  |
| Well              |      |     | 4 wells                                           |          |  |
| Boundary          |      |     | Left: pres.head/-4.317<br>Right: pres.head/4.513m |          |  |







• Finish all lab and field experiment.

• Modify the inverse K field.

• Using the K field to construct the hydraulic tomography.

# THANK YOU FOR LISTENING

$$\xi_*^{(1)} = \lambda^T \zeta_{\text{obs}} + \mu^T \varepsilon_{\text{obs}}$$
$$\xi_*^{(k+1)} = \xi_*^{(k)} + \omega^{(k)} (\varepsilon_{\text{obs}} - \varepsilon^{(k)})$$

Ni, et al., (2009)

 $\xi_*^{(k)}$  is the kth estimation of parameter (i.e., the hydraulic\* conductivity K),  $\zeta obs$  and  $\varepsilon obs$  represent the differ-ences of the parameters (i.e., hydraulic conductivity) and hydraulic heads at observation locations,

 $\lambda, \mu, \omega(k)$  are cokriging weighting vectors evaluated by stochastic simulations.



- Aquifer has infinite areal extent
- Aquifer is homogeneous, anisotropic and of uniform thickness
- Control well is fully or partially penetrating
- Diameter of a pumping well well is very small so that storage in the well can be

#### neglected

- b is aquifer thickness [L]
- Kr is the radial (horizontal) hydraulic conductivity [L/T]
- Kz is the vertical hydraulic conductivity [L/T]
- ID is dimensionless depth to bottom of pumping well screen (I/b)
- Q is pumping rate [L<sup>3</sup>/T]
- r is radial distance from pumping well to observation well [L]
- s is drawdown [L]
- S is elastic storage coefficient [dimensionless]
- Sy is specific yield [dimensionless]
- ts is dimensionless time with respect to S
- t is elapsed time since start of pumping [T]
- T is transmissivity [L<sup>2</sup>/T]





| Parameter    | Value | Unit            |
|--------------|-------|-----------------|
| а            | 7.07  | cm <sup>2</sup> |
| L            | 15    | cm              |
| А            | 44.16 | cm <sup>2</sup> |
| ho           | 84    | cm              |
| h1           | 54    | cm              |
| log10(ho/h1) | 0.19  |                 |

$$\mathsf{K}=2.3\frac{aL}{A(t_{1}-t_{0})}\log_{10}\frac{h_{0}}{h_{1}}$$

-a: the area of standpipe
-L: the length of sample
-A: the area of sample
-t<sub>1</sub>-t<sub>0</sub>: the time for falling from h<sub>0</sub> to h<sub>1</sub>



