<Paper review>

Evaluating MT3DMS for heat transport simulation of closed geothermal systems

Jozsef Hecht-Méndez, Nelson Molina-Giraldo, Philipp Blum, and Peter Bayer 2010, *Ground Water*, **48**(**5**), 741-756.

Presenter : Ying-Han Chen Advisor : Prof. Shih-Jung Wang Date : 2023/06/02

Outline

- Introduction
- Method
- Model setting
- Results and discussion
- Conclusions
- Future work

Introduction

- MT3DMS (Modular Transport, 3-Dimensional, Multi-Species model) is a widely used program for simulation of solute transport in porous media. (Zheng and Wang,1999)
- Since the governing equations for solute transport are mathematically identical to those for heat transport, this program appears also applicable to simulation of thermal transport phenomena in saturated aquifers.
- Using MT3DMS for heat transport in aquifers has limitations, because it is decoupled from the flow model.
- MT3DMS uses the flow regime predicted by flow simulators such as MODFLOW (Harbaugh et al. 2000)
- So, evaluating the utility of MT3DMS for shallow geothermal systems would be discuss in this research.

Introduction

Ground source heat pump (GSHP) system

- a pair of heat exchangers
- the fluid never mixing with the groundwater

Ground water heat pump (GWHP) system

- production and injection wells
- groundwater is directly brought to the surface

Method (governing equations)

Solute transport in transient groundwater flow systems solved by MT3DMS (Zheng and Wang 1999)

$$\left(1 + \frac{\rho_b K_d}{n}\right) \frac{\partial C^k}{\partial t} = \nabla \cdot \left[(D_m + \alpha v_a) \nabla C^k \right] - \nabla \cdot \left(v_a C^k \right) + \frac{q_{ss} C_{ss}}{n}$$

Retardation factor * transient term **Dispersio**

Dispersion & advection

Source & sink

symbol	unit	variable
$ ho_b$	kg/m ³	Dry bulk density $\rho b = (1 - n)\rho s$
K_d	m³/kg	Distribution coefficient
C^k	kg/m ³	Dissolved mass concentration
D_m	m^2/s	thermal diffusivity
α	m	Dispersivity
v_a	m/s	Seepage velocity
q_{ss}	$m^3/s/m^3$	Volumetric flow rate per unit volume of aquifer
C_{ss}	kg/m^3	Concentration of the sources or sinks

Method (comparison Metric)

Comparison of the simulations is based on residual errors and follows the method of efficiencies (EF)

$$EF = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 - \sum_{i=1}^{n} (x_i' - x_i)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

(Loague and Green, 1991)

- x_i Observed values (analytical solution)
- \bar{x} The mean of the observed values
- x'_i The values simulated by MT3DMS

- $\bullet \quad 0 \leq \mathrm{EF} \leq 1$
- EF = 1, representing no difference between analytical and simulated results.
- EF = 0, representing high residual error.

Method (comparison Metric)

Comparison of the simulations is based on residual errors and follows the method of efficiencies (EF)

$$EF = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 - \sum_{i=1}^{n} (x_i' - x_i)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

(Loague and Green, 1991)

- x_i Observed values (analytical solution)
- \bar{x} The mean of the observed values
- x'_i The values simulated by MT3DMS

Very good	$0.98 \leq \mathrm{EF} \leq 1$
Good	$0.8 \leq \mathrm{EF} \leq 0.97$
Moderate	$0.5 \leq \mathrm{EF} \leq 0.79$
Bad	$\mathrm{EF} < 0.5$

Model setting

- $300 \text{ m} \times 200 \text{ m}$ with regular grid spacing ($\Delta x = \Delta y = 0.5 \text{ m}$)
- Source cell (heat changer) is at x = 50 m, y = 100 m, and size is 0.1×0.1 m
- Fixed head boundary conditions at west and east.
- Fixed temperature at west border (285.15 K or 12°C).
- For 2D cases, vertical heat transfer is ignored.
- For 3D cases
 - 13 identical uniform 1-m layers
 - Source is at 6,7,8 layers with the same coordinates as 2D.

Model setting

Table 2Scenarios Classified According to the Underlying Thermal Péclet Numbers (Pe)						
Scenario	Pe	Gradient	Seepage Velocity (v _a) (m/s)			
1 2 3	0 1 10	$0 \\ 1.2 \times 10^{-4} \\ 1.2 \times 10^{-3}$	$0 \\ 3.7 \times 10^{-6} \\ 3.7 \times 10^{-5}$			

_	Déclet number (D) –	$ql\rho_w C_w$	heat convection
	$(r_e) -$	λ_m	heat conduction

- Scenario 1 (S1) : conduction-dominant, no groundwater flow
- Scenario 2 (S2) : convection and conduction processes have a similar influence
- Scenario 3 (S3) : convection-dominant, high flow velocity

symbol	variable
q	Darcy's velocity
l	Characteristic length (grid spacing)
$ ho_w$	Density of water
C_w	Specific heat capacity of the water
λ_m	Effective thermal conductivity of porous media

Results and discussion

MT3DMS vs. analytical solutions

MT3DMS vs. numerical solutions (FEFLOW, SEAWAT)

	2D	3D
Scenario 1		
Scenario 2		
Scenario 3		

	2D	3D
Scenario 1		
Scenario 2		
Scenario 3		

Results and discussion

MT3DMS compares with <u>analytical solutions</u>

I	Efficiencies of t	the Compar	rison Between and Tran	and Analytica itions	al Results, S	Steady-State		
2D				3D				
	<10 ı	n	>10	m	<10	m	>10	m
Scenario	Steady State	Transient	Steady State	Transient	Steady State	Transient	Steady State	Transient
1 (no flow)		0.98		1.00				
2 (Pe = 1)	0.99	1.00	0.99	1.00	0.93	0.96	1.00	1.00
3 (Pe = 10)	0.96	0.96	0.96	1.00	0.92	0.84	0.94	1.00

- Two sectors (from the source) : proximate sector, 1-10m ; distant sector, 10-100m
- Transient results are shown for 10 days

- The calculated efficiency for the proximate and distant sector have a very good agreement between both curves.
- To compare the temperature differences of S2 and S3 under steady state conditions, the convection-dominated (S3) case brings out a lower absolute temperature change near the source.
- This reflects the important role of groundwater flow for the energy supply at the borehole.

Results and discussion (3D cases)

- S1 is not considered due to the lack of a 3D analytical solution for pure conduction.
- Shows good to very good agreement between steady state and transient numerical and analytical results at the proximate and distant sector.
- The temperature differences are similar with 2D cases.

Results and discussion MT3DMS compare with <u>numerical solutions</u>

		21)			3	D	
	<10 r	n	>10	m	<10	m	>10	m
Scenario	Steady State	Transient	Steady State	Transient	Steady State	Transient	Steady State	Transien
FEFLOW								
1 (no flow)	_				_			_
2 (Pe = 1)	0.99	0.99	1.00	1.00	0.64	0.64	0.93	1.00
3 (Pe = 10)	0.93	0.91	0.95	0.97	0.64	0.64	0.87	1.00
SEAWAT								
1 (no flow)	_		_		_	_	_	_
2 (Pe = 1)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
3 (Pe = 10)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

- These differences are likely to be dominated by differences in how the source is represented in MT3DMS(like a planar source) and FEFLOW (like a line source).
- The close match between MT3DMS and SEAWAT is consistent with the overall efficiency of 1.0 for all cases.
- Because the results of SEAWAT and MT3DMS have a high degree of agreement, the calculation time of the two is further discussed.

Results and discussion MT3DMS compare with <u>numerical solutions</u>

	Exec	Table 7 ution Time for the Difference	ent Scenarios		
		Execution	Time (s)		
	2	D	3D		
Code	Scenario 2 (Pe = 1)	Scenario 3 (Pe = 10)	Scenario 2 (Pe = 1)	Scenario 3 (Pe = 10)	
MT3DMS	238	1,070	5,484	20,051	
SEAWAT	507	1,595	11,114	31,737	

- Execution times for S1 are not shown since no significant differences are noticeable.
- SEAWAT requires longer running times for the same simulated scenarios than MT3DMS.

Conclusions

- They used three different scenarios for comparison, which differ with respect to the assumed groundwater flow velocities.
- The overall agreement of MT3DMS with analytical solutions, SEAWAT and FEFLOW is good to very good. ($0.8 \leq EF \leq 1$)
- Highest absolute temperature differences reach 5°C if heat is transported by conduction and convection, and 1°C if convection dominates.

Future work

- Study area : Yilan, Jiaoxi
- Software : GMS(Groundwater Modeling System)
- Motivation : Doing the hot spring management so that the hot spring can be used longer.

Step 1

- Build the 3D model with sediment and bedrock
- Kankou formation (Kk), Szuling sandstone (SI)

Future work

Step 2

- Collect pumping well, river recharge, rain data.
- Use MODFLOW to simulate the flow field.

Step 3

- Input MODFLOW solution to MT3DMS
- Use MT3DMS to simulate the heat transport.

Thanks for your listening

Governing equations

Symbol	l Variable	Unit	Symbol	Variable	Unit	
$K_{\rm d}$ C^k $q_{\rm ss}$	Distribution coefficient Dissolved mass concentration Volumetric flow rate per unit volume of	(m ³ /kg) (kg/m ³) (m ³ /s/m ³)	$T, T_{\rm s}$ $T_{\rm u}$	Temperature, temperature of the solid Undisturbed temperature of the underground	(K) (K)	
$q_{ m h} \\ C_{ m ss} \\ F_{ m o}$	aquifer representing sources and sinks Heat injection/extraction Concentration of the sources or sinks Energy extraction (point source)	(W/m ³) (kg/m ³) (W)	R E _i η Κ	Retardation factor Exponential integral function Integration parameter Modified Bessel function of second kind	(-) (-) (-)	
	Energy extraction per unit length of the borehole (line source) Energy extraction per area of the source	(W/m) (W/m ²)	R ₀	and order zero	(-)	
	(planar source) Characteristic length (grid spacing)	(m)		ат		
$\lambda_{\rm m}$	porous media Water thermal conductivity	(W/m/K)	_1	$n\rho_w c_w \frac{\partial T}{\partial t} + (1 - 1)$	$n)\rho$	_S C _S
λ_s n ρ_w	Solid thermal conductivity Porosity Density of water	(W/m/K) (-) (kg/m ³)		σι		
c_{w} $\rho_{w}c_{w}$ ρ_{s}	Specific heat capacity of the water Volumetric heat capacity of the water Density of the solid material (=minerals)	(J/kg/K ¹) (J/m ³ /K ¹) (kg/m ³)		$n\rho_w c_w \frac{\partial T}{\partial t} + (1 - 1)$	n)p	ςCa
c_s $\rho_s c_s$ ρ_b	Specific heat capacity of the solid Volumetric heat capacity of the solid Dry bulk density $\rho_b = (1 - n)\rho_s$	(J/kg/K) (J/m ³ /K) (kg/m ³)		dt		
$\alpha, \alpha_{\rm l}$ $\alpha_{\rm th}$ $\alpha_{\rm tv}$	Dispersivity, longitudinal dispersivity Transverse horizontal dispersivity Transverse vertical dispersivity	(m) (m) (m)		$\rho_m c_m = n \rho_w c_w -$	+(1	
$q = v_{\rm f}$ $v_{\rm a}$ $D_{\rm m}, D_{\rm h}$	Darcy velocity Seepage velocity Molecular diffusion, thermal diffusivity	(m/s) (m/s) (m ² /s)			,	
D_1 $D_{\rm th}$	Longitudinal heat dispersion coefficient Transverse horizontal heat dispersion coefficient	(m ² /s) (m ² /s)		$\rho_m c_m \partial T$	•	
D_{tv} x, y, z	Transverse vertical heat dispersion coefficient Cartesian coordinates	(m ² /s) (m)	- 7	$\overline{n\rho_w C_w} \partial t$		V
R Y	Radial coordinate Dimension (length) of the source in y direction	(m) (m)		$(\rho_h K_d \setminus \partial C^h)$	k	
Z ΔT	Dimension (length) of the source in z direction Temperature difference	(m) (K)		$\left(1+\frac{t}{n}\right)\frac{1}{\partial t}$	- =	∇
ΔT_{o} t	Temperature difference at the source Time	(K) (s)				

$R = \frac{\rho_m c_m}{n \rho_w c_w}$	$D_m = \frac{\lambda_m}{n\rho_w c_w}$
$k_d = \frac{c_s}{\rho_w c_w}$	$q_{ss} = \frac{q_h}{\rho_w c_w}$
$s_{s}\frac{\partial T_{s}}{\partial t} = \nabla \cdot \left[(\lambda_{m} + n\rho_{w}) \right]$, <i>c_wαv_a)</i> ∇T]−∇ ·

$$n\rho_w c_w \frac{\partial T}{\partial t} + (1-n)\rho_S c_s \frac{\partial T_s}{\partial t} = \rho_m c_m \frac{\partial T}{\partial t}$$

$$\rho_m c_m = n\rho_w c_w + (1-n)\rho_s c_s = np_w c_w + \rho_b c_s$$

$$\frac{\rho_m c_m}{n \rho_w C_w} \frac{\partial T}{\partial t} = \nabla \cdot \left[\left(\frac{\lambda_m}{n \rho_w c_w} + \alpha v_a \right) \nabla T \right] - \nabla \cdot \left(v_a T \right) + \frac{q_h}{n \rho_w c_w} \right]$$
$$\left(1 + \frac{\rho_b K_d}{n} \right) \frac{\partial C^k}{\partial t} = \nabla \cdot \left[\left(D_m + \alpha v_a \right) \nabla C^k \right] - \nabla \cdot \left(v_a C^k \right) + \frac{q_{ss} C_{ss}}{n}$$

 $(n\rho_w c_w v_a T) + q_h$

Model setting

https://www.energy.gov/energysaver/geothermal-heat-pumps

Table 3 MT3DMS Specification for All Scenarios				
Symbol	Variable	Value	Unit	MT3DMS Package
n	Porosity	0.26	(-)	BTN
λ_{m}	Effective thermal conductivity of the porous media	2.0	(W/m/K)	_
$\rho_{\rm w}c_{\rm w}$	Volumetric heat capacity of the water	$4.18 \times 10^{+6}$	(J/m ³ /K)	_
$\rho_{\rm s}$	Density of the solid material (= minerals)	2650	(kg/m^3)	_
Cs	Specific heat capacity of the solid	880	(J/kg/K)	_
$\rho_{\rm b}$	Dry bulk density	1961	(kg/m^3)	RCT
Kd	Partition coefficient	2.10×10^{-4}	(m^3/kg)	RCT
α	Longitudinal dispersivity	0.5	(m)	DSP
$\alpha_{\rm th}$	Transverse horizontal dispersivity	0.05	(m)	DSP
$\alpha_{\rm tv}$	Transverse vertical dispersivity	0.05	(m)	DSP
$D_{\rm h}$	Thermal diffusivity	1.86×10^{-6}	(m^2/s)	DSP
Tu	Undisturbed temperature of the ground	285.15	(K)	BTN
D	Retardation factor	2.59	(-)	RCT

- Hydraulic conductivity = $8 \times 10^{-3} m/s$ (typical sand aquifers)
- Density = 999.49 kg/m^3

Analytical solutions (2D)

• Transient conditions, closed system, and no groundwater flow velocity.

$$\Delta T(r,t) = \frac{F_L}{4\pi\lambda_m} E_i \left[-\frac{r^2}{4\left(\frac{\lambda_m}{P_m C_m}\right)t} \right]$$
 (Carslaw and Jager 1959)

• Transient conditions, closed system, and groundwater flow velocity considering heat dispersivity.

$$\Delta T(x,t) = \frac{F_L}{4\pi n \rho_w C_w \sqrt{D_1 D_{th}}} \exp\left[\frac{\nu_a x}{2D_1}\right] \int \frac{1}{n} \times \exp\left[-\eta - \frac{V_a^2 x^2}{16D_{th}^2 \eta}\right] d\eta \quad (\text{Metzger et al. 2004})$$

• Steady-state conditions, closed system, and groundwater flow velocity.

$$\Delta T(x) = \frac{F_L}{2\pi n \rho_w c_w D_{\text{th}}} \exp\left[\frac{v_a x}{2D_{th}}\right] K_0 \left[\frac{v_a x}{2D_{th}}\right]$$
(Diao et al. 2004)

Analytical solutions (3D)

• Transient and steady-state conditions, closed system, and groundwater flow velocity.

$$\Delta T(x,y) = \frac{F_0}{v_a n \rho_w c_w \sqrt{4\pi D_{th}(x/v_a)}} \times \exp\left(\frac{-v_a(y^2)}{4D_{th}x}\right)$$

$$\Delta T(x,y) = \left(\frac{\Delta T_0}{2}\right) \operatorname{erfc}\left[\frac{(Rx - v_a t)}{2\sqrt{D_1 R_t}}\right] \times \operatorname{erf}\left[\frac{Y}{4\left(D_{th}(x/v_a)\right)^{0.5}}\right] \times \operatorname{erf}\left[\frac{Z}{4\left(D_{tv}(x/v_a)\right)^{0.5}}\right]$$

(Fried et al. 1979; Domenico and Robbins 1985)

Results and discussion (numerical_2D cases)

Results and discussion (numerical_3D cases)

