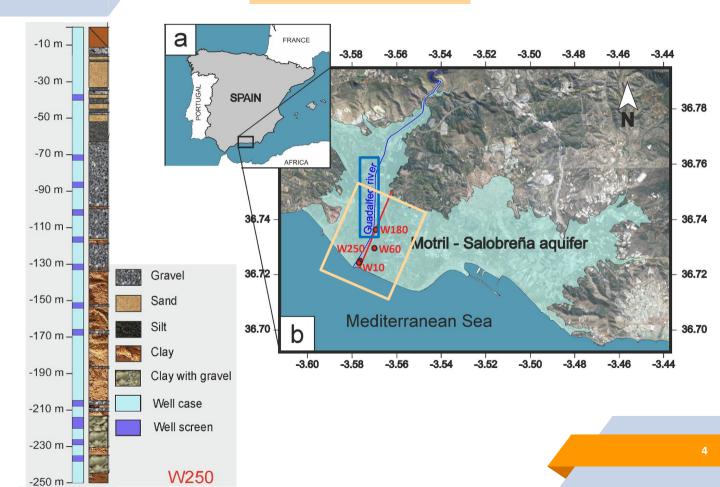

Temperature distribution in coastal aquifers: Insights from groundwater modeling and field data

A.M. Blanco-Coronas a, C. Duque, M.L. Calvache, M. L´opez-Chicano,2021, Journal of Hydrology

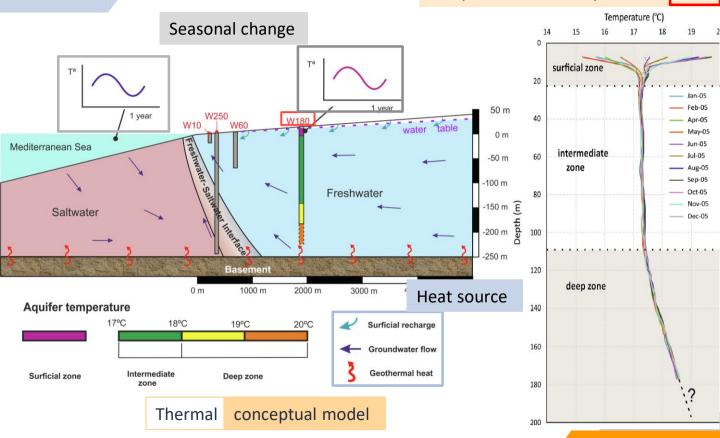
Presenter:許安誼 An-Yi Hsu Advisor:倪春發 Chuen-Fa Ni

Table of contents

Introduction


Possible heat sources of coastal aquifer:

- This research considered all possible sources of heat in a coastal aquifer by using a combination of field data and numerical modeling
 This research considered the variable-density flow, coupled heat and solute transport to set up the model.
- The position of the freshwater-saltwater interface (FSI) and its effect on temperature distribution have been modeled


Introduction

Research area

Introduction

Temperature vertical profiles in W180

Methodology

Heat transport is analogous to solute transport in groundwater modeling, adapted This research use SEAWAT to run the numerical model equation to assign suitable thermal parameters for temperature species

C_{Psolid}:specific heat capacity of the solid

C_{Pfluid}:specific heat capacity of the fluid

 K_d^t = distribution coefficient of thermal

Bulk density : $\rho_{\rm b} = \rho_{\rm s}(1-\theta)$

k_{Tbulk}:bulk thermal conductivity of the aquifer material

Solute transport equation

$$\left(1 + \frac{\rho_{b}K_{d}^{k}}{\theta}\right) \frac{\partial(\theta C^{k})}{\partial t} = \nabla \left[\theta \left(D_{m}^{k} + \alpha \frac{q}{\theta}\right) \nabla C^{k}\right] - \nabla(qC^{k}) - q_{s}'C_{s}^{k}$$

Heat transport equation

$$\begin{pmatrix} 1 + \frac{1 - \theta}{\theta} \frac{\rho_s}{\rho} \frac{C_{Psolid}}{C_{Pfluid}} \end{pmatrix} \frac{\partial(\theta T)}{\partial t} = \nabla \left[\theta \left(\frac{k_{Tbulk}}{\theta \rho C_{Pfluid}} + \alpha \frac{q}{\theta} \right) \nabla T \right] - \nabla(qT) - q'_s T_s$$

$$K_d^t = \frac{C_{Psolid}}{C_{Pfluid*\rho}}$$

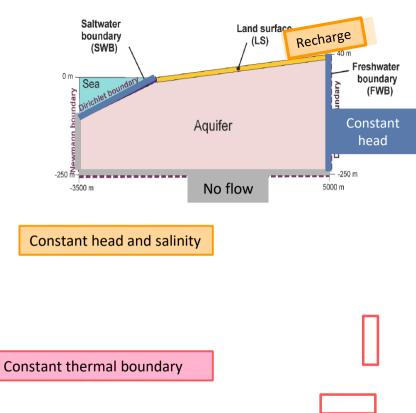
$$D_m^t = \frac{k_{Tbulk}}{\theta \rho C_{Pfluid}}$$

T:temperature

T_s:source temperature

- $\rho_{\rm b}$: bulk density of solid
- K_d^k : distribution coefficient of species k
- C^k : concentration of species k
- D_m^k : molecular diffusion coefficient
- α : dispersivity tensor
- q : specific discharge
- q'_s : fluid source or sink
- C_s^k : is the source or sink concentration of species k

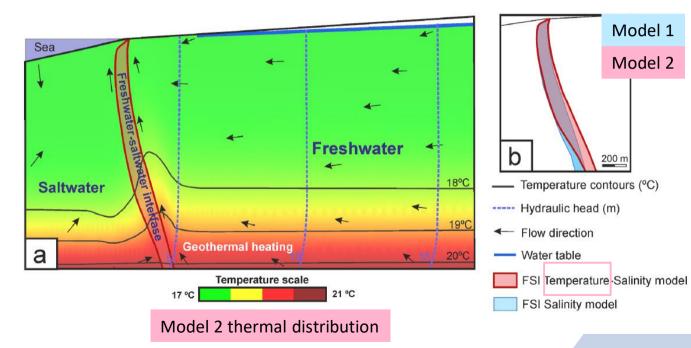
Methodology


Table 1

Y

Y

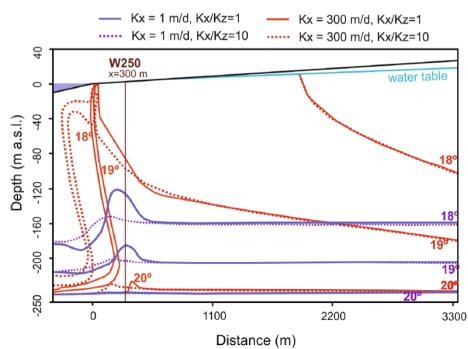
Input values of the parameters for the ϵ


Input parameters	Case study model		
Specific storage	1E-5 m ⁻¹ 0.25		
Specific yield			
Porosity θ	0.3	0.3 10 m	
Longitudinal dispersivity	10 m		
Horizontal transverse dispersivity	5 m		
Vertical transverse dispersivity	5 m		
Freshwater salinityS1	350 mg/L		
Saltwater salinity S ₂	35000 mg/L		
Freshwater boundary head H_1	17 m		
Saltwater boundary headH ₂	0 m		
Freshwater temperature T_1	16.7 °C		
Saltwater temperature T_2	16.7 °C		
Basement temperature T_3	20.05 ° C		
River water temperature oscillation TO ₁	Sinus functio	n 12–26 °C	
Seawater temperature oscillation TO ₂	Sinus functio	n 14–24 °C	
Molecular diffusion coefficient D_m^s	1E-10 m ² /d		
Thermal conductivity of waterk _{Tfluid}	0.58 W/m° K		
Thermal conductivity of sediments k_{Tsolid}	2.9 W/m°K 4186 J/kg°K		
Specific heat of water C _{Pfluid}			
Specific heat of sediments C _{Psolid}	830 J/kg°K		
Thermal diffusivity D_m^T	0.15 m²/d		
Bulk thermal conductivity k_{Tbulk}	ctivity k _{Tbulk} 1.8 W/m°K		
Thermal distribution factor K_d^t	2E-7 L/mg		
Density change with concentration Density change with temperature Density vs pressure head slope Bulk density ρ_b	0.7 -0.375 kg/(r 0.00446 kg/r 1800 kg/m ³		
Reference temperature	25 °C		
Viscosity vs concentration slope			
Reference viscosity	86.4 kg/ m d	l	

Seasonal temperature change

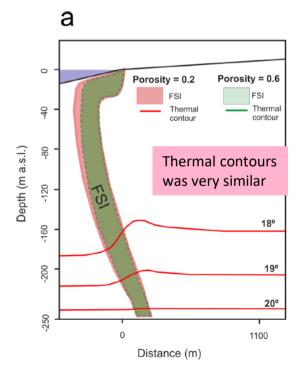
Methodology

Compare FSI position between Model 2 and Model 1

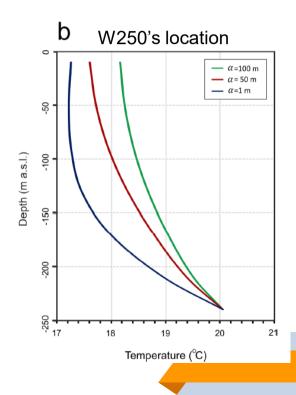


Freshwater-saltwater interface (FSI)

Sensitivity analysis


Sensitivity analysis of hydraulic conductivity

Thermal contour

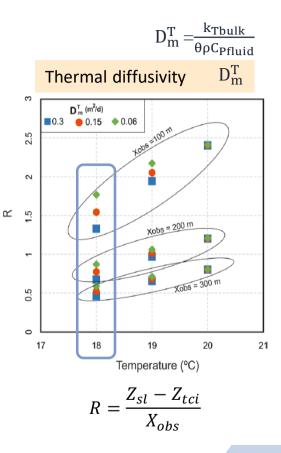


K_x/K_z :Anisotropic ratios

Sensitivity analysis of Porosity θ

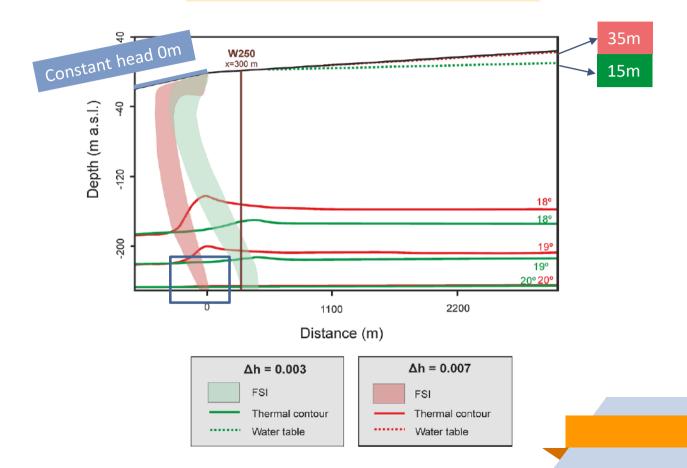
Sensitivity analysis of Dispersivity $\boldsymbol{\alpha}$

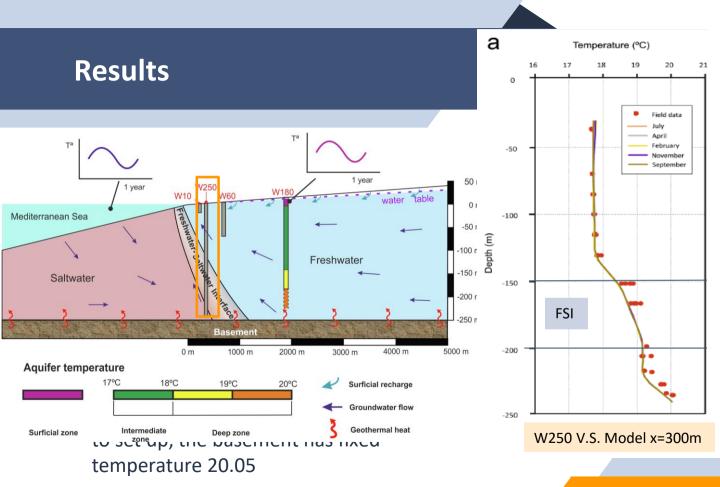
10


Sensitivity analysis

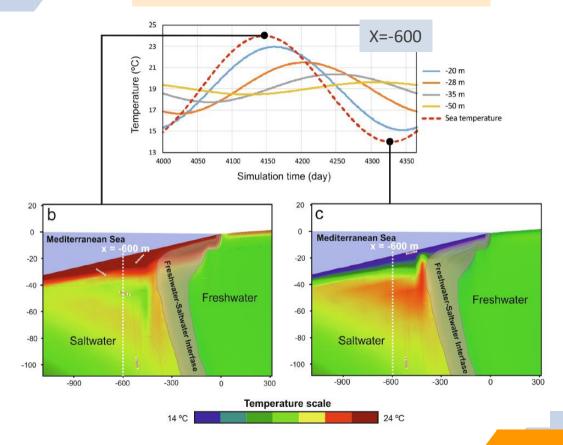
$$K_d^t = \frac{C_{\text{Psolid}}}{\rho C_{\text{Pfluid}}}$$

Thermal distribution coefficient K_d^t 140 120 100 18°C D(B,tc)_i(m) 8 80 19°C 4 20 20°C 0 2.3x10⁸ 1.27x10⁻⁷ 2.3x10⁻⁷ minimum $K_d^t(L/mg)$ maximum mean


D(*B*,*tc*): vertical distance from the aquifer basement to each thermal contour


 Z_{sl} = the elevation of sea level Z_{tci} = the elevation of the thermal contour

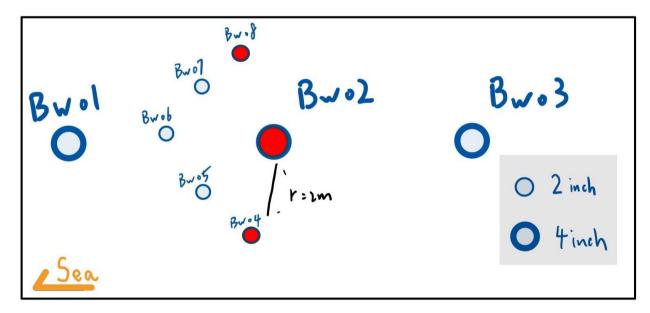
Sensitivity analysis


Sensitivity analysis of hydraulic gradient Δh

Results

Compare the temperature distribution

Conclusions


- K is the most controlling parameter in the temperature distribution of a coastal aquifer
- The Kx/Kz ratio had a notable influence on the vertical component of heat transport
- This research is the first in considering all possible sources of heat in a coastal aquifer simultaneously by using a combination of field data and numerical modeling.
- FSI is the thermal barrier that separates the temperature of the saltwater and freshwater
- In this study, we discussed the major processes and the effect of parameters on the application of temperature in coastal aquifers.

Future work

 Because of the deterioration of marine environment, it is necessary to identify the groundwater flow's direction

Future work

Chargerheatting the ingel B: VB 0208

Thank you for listening

Result

模型hydraulic conductivity是照W250岩心 溫度邊界依據W180底部有20.05度固定溫度 右邊淡水16.7度(中間那段溫度approximate value) 水流邊界5000 mm/yr補注量,水流溫度計節變化 模型運行15年在第9年FSI跟地熱處於穩態,表層會季節 性變化

Table 1

Input values of the parameters for the sensitivity analysis and study model.

Input parameters	Sensitivity analysis	Case study model	Source	
Specific storage	1E-5 m ⁻¹	1E-5 m ⁻¹	Calvache et al. (2015)	
Specific yield	0.25	0.25	Similar value to Calvache et al. (2009)	
Porosity 0	0.2-0.6	0.3	Duque et al. (2008)	
Longitudinal dispersivity	1–100 m	10 m	Sauffer et al. (2013)	
Horizontal transverse dispersivity	0.5–50 m	5 m	Sauffer et al. (2013)	
Vertical transverse dispersivity	0.5–50 m	5 m	Sauffer et al. (2013)	
Freshwater salinityS1	350 mg/L	350 mg/L	Field observations	
Saltwater salinity S ₂	35000 mg/L	35000 mg/L	Field observations	
Freshwater boundary head H ₁	15–35 m	17 m	Field observations	
Saltwater boundary headH2	0 m	0 m	Field observations	
Freshwater temperature T_1	17.2 °C	16.7 °C	Field observations	
Saltwater temperature T_2	13 °C	16.7 °C	Manca et al. (2004)	
Basement temperature T ₃	19–30 °C	20.05 ° C	Field observations	
River water temperature oscillation TO ₁	_	Sinus function 12-26 °C	Based on Duque et al. (2010)	
Seawater temperature oscillation TO_2	_	Sinus function 14-24 °C	State of Harbors (Spanish Ministry)	
Molecular diffusion coefficient D_m^s	1E-10 m ² /d	1E-10 m ² /d	Langevin et al. (2007)	
Thermal conductivity of waterk _{Tfluid}	0.58 W/m°K	0.58 W/m°K	Langevin et al. (2007)	
Thermal conductivity of sediments k_{Tsolid}	1–6 W/m°K	2.9 W/m°K	Approximate value for gravel (Xiaoqing et al., 2018	
Specific heat of water C _{Pfluid}	4186 J/kg°K	4186 J/kg°K	Langevin et al. (2007)	
Specific heat of sediments C _{Psolid}	100–1000 J/kg°K	830 J/kg°K	Approximate value for gravel (Xiaoqing et al., 2018	
Thermal diffusivity D_m^T	0.06–0.3 m ² /d	0.15 m ² /d	Calculated using eq. (4)	
Bulk thermal conductivity k_{Tbulk}	0.87–4.37 W/m° K	1.8 W/m°K	Calculated using eq. (5)	
Thermal distribution factor K_d^t	2E-8 – 2E-7 L/mg	2E-7 L/mg	Calculated using eq. (3)	
Density change with concentration	0.7	0.7	Langevin et al. (2007)	
Density change with temperature	−0.375 kg/(m ³ °C)	−0.375 kg/(m ³ °C)	Langevin et al. (2007)	
Density vs pressure head slope	0.00446 kg/m ⁴	0.00446 kg/m ⁴	Langevin et al. (2007)	
Bulk density ρ_b	1800 kg/m ³	1800 kg/m ³	Calculated with $\rho_b = \rho_s(1-\theta)$	
Reference temperature	25 °C	25 °C	Langevin et al. (2007)	
Viscosity vs concentration slope	1.923E-6 m ⁴ /d	1.923E-6 m ⁴ /d	Langevin et al. (2007)	
Reference viscosity	86.4 kg∕ m d	86.4 kg∕ m d	Langevin et al. (2007)	

Table 2
Hydraulic conductivity values defined in each layer of the study model.

	Thickness (m)	Hydraulic conductivity (m/d)
Layer 1	16	Kx = Ky = 5 and $Kz = 0.5$
Layer 2	121	Kx = Ky = 400 and $Kz = 40$
Layer 3	63	Kx = Ky = 30 and $Kz = 5$
Layer 4	12	Kx = Ky = 150 and $Kz = 1$
Layer 5	35	Kx = Ky = 20 and $Kz = 2$