Analytical Model for Leakage Detection in  $CO_2$ Sequestration in Deep Saline Aquifers: Application to ex Situ and in Situ  $CO_2$  Sequestration Processes

> Ahmadi, M.A., & Chen, Z., 2019. ACS Omega, 4, 21381 - 21394.

> > Advisor : Prof. Jui-Sheng Chen Student : Gia Huy, Lam (Jia-hui Lin) Date : 2023/05/26

# **OUT LINE**

# **1. INTRODUCTION**

**2. METHODOLOGY** 

**3. RESULTS AND DISCUSSION** 

**4. CONCLUSIONS** 

# What are CO<sub>2</sub> SEQUESTRATION & DEEP SALINE AQUIFER?



### **CO<sub>2</sub> SEQUESTRATION**

- Carbon capture and storage (CCS)
- Capturing carbon dioxide emissions
- Reduce GHGs and mitigate the impacts of climate change
- \*The USGS is conducting assessments on two major types of carbon sequestration: **geologic** and biologic.

#### **DEEP SALINE AQUIFER**



- Deep saline aquifers is one of the main candidates to cut anthropogenic CO<sub>2</sub> emissions.
- Nevertheless, saline aquifers mostly **do not** have competent sealing cap rocks.

#### LITERATURE REVIEW

**Different methods** can be employed for detecting CO<sub>2</sub> leakage during the sequestration process:



Mao et al. (2017) and Zhang et al. (2018) used **the temperature distribution.** 



Jordan et al. (2015) used a response surface method (RSM).

#### In this work:



| Introduction Methodology | <b>Results and discussion</b> |  |
|--------------------------|-------------------------------|--|
|--------------------------|-------------------------------|--|

#### Conclusions

#### **MODEL DESCRIPTION**



Schematic of the problem considered in this study (a) In situ sequestration and (b) Ex situ sequestration.

Legend:

X: The distances

K: Permeability

A: The area of formation

h: Thickness

q: Rate

a: the ratio of production to the injection rate
m: monitoring well/aquifer
s: Storage aquifer
Subscript "A": Storage aquifer
l: leakage path

# **MODEL COMPARISON**

|                   | In Situ Sequestration                               | Ex Situ Sequestration                                           |
|-------------------|-----------------------------------------------------|-----------------------------------------------------------------|
| Process           | CO <sub>2</sub> directly injected                   | $CO_2$ converted to $CO_3^{2-}$<br>and then injected            |
| Leakage Detection | Critical due to lack of competent sealing cap rocks | Still important but less critical due<br>to carbonate formation |
| Efficiency        | Higher efficiency due to direct injection           | Lower efficiency due to additional conversion process           |

# **Objectives**

Determining dimensionless leakage rates and dimensionless pressure responses due to leakage in both in situ and ex situ  $CO_2$  sequestration processes.



#### **GOVERNING EQUATION**

#### Pressure Response of the Monitoring Aquifer



The initial and boundary conditions:  $P_{\rm m}(X, t) = P_{\rm mi}t = 0$  $P_{\rm m}(X, t) = P_{\rm mi}X \longrightarrow +\infty$ 

Where:

 $P_m$ : pressure in the mornitoring aquifer  $\eta_D$ : diffusivity coefficient of the monitoring aquifer

#### Pressure Response of the Storage Aquifer

| $\partial^2 P_{\rm s}$ | 1          | $\partial P_{\rm s}$ |
|------------------------|------------|----------------------|
| $\partial x^2$         | $\eta_{s}$ | ∂t                   |

The initial and boundary conditions:  $P_{\text{Ds}}(X, t) = P_{\text{si}}t = 0$  $P_{\text{s}}(X, t) = P_{\text{si}}X \longrightarrow +\infty$ 

Where

P<sub>s</sub>: pressure of the storage aquifer  $\eta_D$ : diffusivity coefficient of the monitoring aquifer

Leakage rate equation

$$q_{l}(t) = \frac{K_{m}A_{m}}{\mu B} \times \frac{dP_{m}}{dx} at X = X_{A}$$

Where: q<sub>l</sub>: leakage rate K<sub>m</sub> : Permeability of monitoring aquifer B: formation volume factor

Conclusions

#### **GOVERNING EQUATION WITH DIMENSIONLESS VARIABLES**

#### Pressure Response of the Monitoring Aquifer



The initial and boundary conditions:

$$P_{\rm Dm}(X_{\rm D}, t_{\rm D}) = 0 \ t_{\rm D} = 0$$

$$P_{\rm m}(X_{\rm D}, t_{\rm D}) = 0 X_{\rm D} \longrightarrow +\infty$$

Leakage rate equation:

$$q_{\rm lD}(t_{\rm D}) = \frac{K_{\rm m}A_{\rm m}}{\mu B} \times \frac{dP_{\rm Dm}}{dx_{\rm D}}$$
 at X = X<sub>A</sub>

#### Pressure Response of the Storage Aquifer



The initial and boundary conditions:

$$P_{\rm s}(X_{\rm D},\,t_{\rm D})=0t_{\rm D}=0$$

 $P_{\rm s}(X_{\rm D}, t_{\rm D}) = 0X_{\rm D} \longrightarrow +\infty$ 

| $X_{\rm D} = X/X_{\rm e}$                                                           |
|-------------------------------------------------------------------------------------|
| $t_{\mathrm{D}} = rac{\eta_{\mathrm{s}} t}{{X_{\mathrm{e}}}^2}$                    |
| $T_{\rm D} = rac{K_{\rm m}A_{\rm m}}{K_{\rm s}A_{\rm s}}$                          |
| $P_{\rm Dm} = \frac{K_s A_s}{q \mu B X_e} (P_{\rm mi} - P_{\rm m})$                 |
| $P_{\rm Ds} = \frac{K_{\rm s}A_{\rm s}}{q\mu B X_{\rm e}} (P_{\rm si} - P_{\rm s})$ |
| $X_{\rm AD} = X_{\rm A}/X_{\rm e}$                                                  |
| $\eta_{ m D}=rac{\eta_{ m m}}{\eta_{ m s}}$                                        |
| $q_{ m lD}(t_{ m D})=rac{q_{ m l}(t)}{q}$                                          |
| $q_{\mathrm{inD}}^{}(t_{\mathrm{D}})=rac{q_{\mathrm{in}}(t)}{q}$                   |
| $q_{ m proD}(t_{ m D}) = rac{q_{ m prod}(t)}{q}$                                   |

**Table 1. Dimensionless Variables** usedfor Driving the Dimensionless Form ofGoverning Equations.



Analyze pressure responses, leakage rate, and the effects of important parameters on storage and monitoring aquifers.
 Two cases are examined with a sensitivity analysis of leakage path location and diffusivity. Details are presented in each case.

Methodology

#### **Results and discuss**

# Synthetic Case 1

The analytical solutions are applied in which the dimensionless storage aquifer pressure response at the monitoring well and the dimensionless leakage rate are calculated.





| Parameter       | Value | Parameter        | Value    | Parameter      | Value     | Parameter     | Value |
|-----------------|-------|------------------|----------|----------------|-----------|---------------|-------|
| h <sub>m</sub>  | 30    | Xe               | 100      | K <sub>m</sub> | 2*10-13   | $\eta_{ m m}$ | 2.67  |
| $h_1$           | 16    | T <sub>D</sub>   | 0.026667 | K <sub>1</sub> | 2.5*10-15 | $\eta_{ m s}$ | 5     |
| h <sub>s</sub>  | 45    | μ                | 0.0005   | K <sub>s</sub> | 5*10-13   | $\eta_{ m D}$ | 0.533 |
| 9               | 0.02  | $\phi_{ m m}$    | 0.15     | Cs             | 1*10-9    |               |       |
| X <sub>A</sub>  | 50    | $\Phi_{\rm s}$   | 0.2      | c <sub>m</sub> | 1*10-9    |               |       |
| X <sub>B</sub>  | 50    | $B_{ m w}$       | 1        | $A_{\rm s}$    | 4500      |               |       |
| X <sub>AD</sub> | 0.5   | $A_{\mathrm{m}}$ | 3000     | $A_1$          | 1600      |               |       |

Legend:

- The dimensionless diffusivity coefficient  $\eta_{\rm D}$  :
- Dimensionless distance between leakage path and injection well  $X_{AD}$ :
- Dimensionless time for leakage detection t<sub>D</sub>





coeffcients ( $\eta_D$ ) [0.01:0.01:0.1] when  $X_{AD} = 0.5$ 

Increasing the  $\eta_D$  decreases the  $P_{Ds}$  at the late time.

The different dimensionless **distance** between the leakage path and injection well (X<sub>AD</sub>) [0.1:0.1:0.9] when  $\eta_D = 0.533$ .

| Increasing   | the   | $X_{AD}$  | results            | in | no |
|--------------|-------|-----------|--------------------|----|----|
| considerable | chang | ge in the | e P <sub>Ds.</sub> |    |    |

Monitoring

well

 $10^{4}$ 



The different dimensionless **diffusivity coefficients**  $(\eta_D)$  [0.01:0.01:0.1] when  $X_{AD} = 0.5$ 

Increasing the  $\eta_{\rm D}$  increases the P<sub>Dm</sub>.

The different dimensionless distance between the leakage path and injection well ( $X_{AD}$ ) [0.1:0.1:0.9] when  $\eta_D = 0.533$ .

At the late time, increasing the  $X_{AD}$  increases slightly the  $P_{Dm}$ .

 $10^{4}$ 

Monitoring

well

### Synthetic Case 2

As clearly seen, the  $k_{\rm m}$  and  $\eta_{\rm D}$  in this case, is 10 times that in the previous case. This is because we will determine the effect of the parameters in both cases on the matter whether the  $\eta_{\rm D}$  is large or small.

**Table 3.** Properties of the Storage and Monitoring Aquifers in the Synthetic Case 2

| Parameter      | Value | Parameter                        | Value    | Parameter             | Value     | Parameter     | Value |
|----------------|-------|----------------------------------|----------|-----------------------|-----------|---------------|-------|
| $h_{ m m}$     | 30    | Xe                               | 100      | K <sub>m</sub>        | 2*10-12   | $\eta_{ m m}$ | 26.67 |
| $h_1$          | 16    | TD                               | 0.026667 | K <sub>1</sub>        | 2.5*10-15 | $\eta_{ m s}$ | 5     |
| hs             | 45    | μ                                | 0.0005   | K <sub>s</sub>        | 5*10-13   | $\eta_{ m D}$ | 5.333 |
| q              | 0.02  | ${oldsymbol{\phi}_{\mathrm{m}}}$ | 0.15     | Cs                    | 1*10-9    |               |       |
| X <sub>A</sub> | 50    | $\Phi_{\rm s}$                   | 0.2      | <i>c</i> <sub>m</sub> | 1*10-9    |               |       |
| X <sub>B</sub> | 50    | $B_{ m w}$                       | 1        | $A_{\mathrm{s}}$      | 4500      |               |       |
| $X_{\rm AD}$   | 0.5   | $A_{\mathrm{m}}$                 | 3000     | $A_1$                 | 1600      |               |       |



The different dimensionless **diffusivity** coefficients  $(\eta_{\rm D})$  $[0.000533 \ 0.00533 \ 0.0533 \ 0.5333 \ 5.333]$  when  $X_{AD} = 0.5$ 

The permeability of monitoring and storage aquifers inversely affected the dimensionless leakage rate.

Increasing the  $X_{AD}$  results in delaying the leakage.

Comparing with synthetic case 1 when  $\eta_{\rm D} = 0.533$ , we can result that the delay period when  $\eta_{\rm D}$  = 5.33 is greater than. 16

Monitorin

 $10^{4}$ 

well





The different dimensionless **diffusivity coeffcients** ( $\eta_D$ ) [0.000533 0.00533 0.0533 0.5333 5.333] when  $X_{AD} = 0.5$ 

Increasing the  $\eta_D$  increases the  $P_{Dm}$  at the monitoring well considerably at the late time.

The different dimensionless **distance** between the leakage path and injection well  $(X_{AD})$  [0.1:0.1:0.9] when  $\eta_D = 5.33$ .

At the late time, increasing the  $X_{AD}$  results in a very small change in the  $P_{Dm}$  at the monitoring well.



| Parameter       | Value | Parameter        | Value    | Parameter      | Value     | Parameter     | Value |
|-----------------|-------|------------------|----------|----------------|-----------|---------------|-------|
| $h_{ m m}$      | 30    | Xe               | 100      | K <sub>m</sub> | 2*10-13   | $\eta_{ m m}$ | 2.67  |
| $h_1$           | 16    | TD               | 0.026667 | K <sub>1</sub> | 2.5*10-15 | $\eta_{ m s}$ | 5     |
| $h_{ m s}$      | 45    | μ                | 0.0005   | K <sub>s</sub> | 5*10-13   | $\eta_{ m D}$ | 0.533 |
| q               | 0.2   | $\phi_{ m m}$    | 0.15     | Cs             | 1*10-9    |               |       |
| X <sub>A</sub>  | 50    | $\Phi_{\rm s}$   | 0.2      | c <sub>m</sub> | 1*10-9    |               |       |
| X <sub>B</sub>  | 50    | $B_{ m w}$       | 1        | $A_{\rm s}$    | 4500      |               |       |
| X <sub>AD</sub> | 0.5   | $A_{\mathrm{m}}$ | 3000     | $A_1$          | 1600      |               |       |



Increasing  $\eta_{\rm D}$  decreases the dimensionless leakage rate.

ultimate leakage rates in all leakage locations are the same.

The result reveals that the ultimate leakage rate is independent of the leakage location.



(a) The different dimensionless **diffusivity coefficients** ( $\eta_D$ ) [0.000533 0.00533 0.0533 0.5333 5.333 53.333] when  $X_{AD} = 0.5$ 

Increasing the  $\eta_{\rm D}$  increases the  $P_{\rm Dm}$  at the late time.

(b) The different dimensionless **distance** between the leakage path and injection well  $(X_{AD})$  [0.1:0.1:0.5] when  $\eta_D = 0.533$ .

Increasing the  $X_{AD}$  from 0.1 to 0.5 increases the  $P_{Dm}$  at the late time.



Increasing the  $\eta_{\rm D}$  increases the P<sub>Ds</sub> at the late time.

 $P_{Ds}$  at the production well is independent of leakage location.

| Introduction | Methodology | <b>Results and discussion</b> | Conclusions |
|--------------|-------------|-------------------------------|-------------|
|              |             |                               |             |

- Analytical models are developed to determine the leakage rate and pressure response from the storage to monitoring aquifers for  $CO_2$  sequestration.

-These models can be useful in detecting and characterizing potential leakage paths in the cap rock, helping to ensure the safety and integrity of  $CO_2$  storage in deep saline aquifers

# Thank you for your attention!

#### **Three distinct zones form during CO**<sub>2</sub> **injection**

#### Injection well

#### Overlying formation

|   |                                                                         | Cap rock                                                           |                               |
|---|-------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|
|   | A CO <sub>2</sub> -phase zone                                           | A two-phase zone                                                   | An aqueous-phase zone         |
| • | CO <sub>2</sub> -rich phase and CO <sub>2</sub> displaces other fluids. | - CO <sub>2</sub> and water coexist.                               | - Dissolved CO <sub>2</sub> . |
| • | Relatively dry.                                                         | - Interactions between CO <sub>2</sub> -<br>water-the rock matrix. | reactions and mineral         |
| ▼ | Linned water content.                                                   | JAZ                                                                | Changes to occur.             |

# **Mineral carbonation**

# $CO_2 + H_2O \rightarrow H_2CO_3$



### Minerals



## CACO<sub>3</sub>, MgCO<sub>3</sub>, FeCO<sub>3</sub>



#### Immobilized within the solid carbonate matrix







| Introduction                                                       | Methodology                                                       | <b>Results and discussion</b>                                                                                                             |                         | Conclusions                                                                                           |
|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------|
| Effect of Inject                                                   | ion                                                               | Effect of Leakage                                                                                                                         | Effe                    | ct of Production                                                                                      |
| $P_{\rm s}(X,t)=P_{\rm si}t$                                       | = 0                                                               | $P_{\rm s}(X, t) = P_{\rm si} t = 0$                                                                                                      | $P_{\rm s}(X,$          | $t)=P_{\rm si}\ t=0$                                                                                  |
| $P_{\rm s}(X,t)=P_{\rm si}X$                                       | $z \to +\infty$                                                   | $P_{\rm s}(X, t) = P_{\rm si} X \to +\infty$                                                                                              | $P_{s}(X,$              | $t) = P_{\rm si} X \to +\infty$                                                                       |
| $q_{\rm in} = \frac{K_{\rm s}A_{\rm s}}{\mu B} \times \frac{1}{2}$ | $\frac{\mathrm{d}P_{\mathrm{s}}}{\mathrm{d}x}X=0$                 | $q_{\rm l}(t) = rac{K_{\rm s}A_{\rm s}}{\mu B} 	imes rac{{ m d}P_{\rm s}}{{ m d}x} X = X_{\rm A}$                                       | $q_{\rm prod}$          | $= a \frac{K_s A_s}{\mu B} \times \frac{\mathrm{d}P_s}{\mathrm{d}x} X = X_e$                          |
| Dimentionless v                                                    | ariables:                                                         | Dimentionless variables:                                                                                                                  | Dime                    | ntionless variables:                                                                                  |
| $P_{\rm Ds}(X_{\rm D}, t_{\rm D}) = 0$                             | $t_{\rm D} = 0$                                                   | $P_{\rm DS}(X_{\rm D}, t_{\rm D}) = 0 t_{\rm D} = 0$                                                                                      | $P_{\rm Ds}(X_{\rm I})$ | $(t_{\rm D}, t_{\rm D}) = 0 \ t_{\rm D} = 0$                                                          |
| $P_{\rm Ds}(X_{\rm D},t_{\rm D})=0$                                | $X_{\rm D} \rightarrow +\infty$                                   | $P_{\rm DS}(X_{\rm D}, t_{\rm D}) = 0 X_{\rm D} \rightarrow +\infty$                                                                      | $P_{\rm Ds}(X_{\rm I})$ | $(t_{\rm D}) = 0 X_{\rm D} \to +\infty$                                                               |
| $q_{\rm inD} = \frac{K_{\rm s}A_{\rm s}}{\mu B} \times$            | $\frac{\mathrm{d}P_{\mathrm{s}}}{\mathrm{d}x} X_{\mathrm{D}} = 0$ | $q_{\rm ID}(t_{\rm D}) = \frac{K_{\rm s}A_{\rm s}}{\mu B} \times \frac{\mathrm{d}P_{\rm Ds}}{\mathrm{d}x_{\rm D}} X_{\rm D} = X_{\rm AD}$ | 9 <sub>proD</sub> =     | $= a \frac{K_s A_s}{\mu B} \times \frac{\mathrm{d} P_s}{\mathrm{d} x} X_\mathrm{D} = X_{\mathrm{eD}}$ |
|                                                                    |                                                                   |                                                                                                                                           |                         |                                                                                                       |