

NATIONAL CENTRAL UNIVERSITY Graduate Institute of Applied Geology

Shoreline Changes and Glacier Retreats under Climate Change Conditions in Svalbard Using Remote Sensing and GIS Technique

Presenter: Vo Hong Son

Advisor: Prof. Chuen-Fa Ni

Date: 2023/07/04

Methods

Results

Conclusion

Climate change: long-term change in the average weather patterns

Key indicators

Temperature increases;

Rising sea levels;

Ice loss at poles & in mountain glaciers;

Frequency & severity changes in extreme weather: hurricanes heatwaves, wildfires, droughts, floods, precipitation;

Glacier decrease on Svalbard in the years 1900, 1960, 2015

Shoreline change and tundra in Svalbard

What is the behavior of landforms in 37 years?

Objectives

Quantifying the shoreline change rates from 1985 – 2022 by Landsat images Determining the changes of glacier and tundra area

Analyzing and evaluating the impact of climate change on Svalbard's landform

Methods

Study Area

Svalbard place in High Arctic

Glaciers cover ~ 60% of the land

Mean T vary -14°C (winter) - +6°C (summer)

Annual precipitation: 200-300 mm

Kaffiøyra ~ 25 km

Methods

Monitoring long-term shoreline changes => Big problem

Integrating remote sensing + GIS technique

Landsat images

Digital Shoreline Analysis System (DSAS)

- Freely software work with ArcGIS
- Computing the rate-of-change statistics for a time series of shoreline (Himmelstoss et al., 2021)

cost-efficient tool for monitor long-term objects change

Digital Shoreline Analysis System

Methods

Landsat toolbox

No.	Processes	Descriptions
1	Download and Extract images	https://eathexplorer.usgs.gov/
2	Landsat Tasseled Cap	Calculate the Tasseled Cap brightness, greenness, and wetness transformations. Normalize the band values to 0-255.
3	NDMI/NDVI	Calculate the Normalize Difference Moisture Index (NDMI) and Normalized the band values to 0-255.
4	Category Creation for Land & Sea	Take Tasseled Cap and NDMI bands as input and create a 10- class land cover data set and dendrogram (note any band combination could be used).
5	Classify Land and Sea	Reclass the land cover data set from 10 to 2 classes.
6	Create Shore Boundary	Create a shoreline from the 2-class land cover data set using Majority filtering, Contour, and Smooth line commands.
7	Output shorelines	Correct for cloud/surf/beach.

Transects cast perpendicular from reference baseline to shorelines

No.	Sensors	Frame	Acquisition date	Spatial resolution (m)	No.	Sensors	Frame	Acquisition date	Spatial resolution (m)
1	Landsat 4-5 TM	216/004	1985/08/30	30	20	-			
2	Landsat 4-5 TM	217/004	1986/07/07	30	21	Landsat 7 ETM+	220/003	2005/07/24	scan line error
3	Landsat 4-5 TM	217/004	1987/07/10	30	22	Landsat 4-5 TM	216/004	2006/07/23	30
4	Landsat 4-5 TM	216/004	1988/09/23	30	23	-			
5	Landsat 4-5 TM	217/004	1989/07/31	30	24	-			
6	Landsat 4-5 TM	221/003	1990/06/28	30	25	-			
7	-				26	Landsat 7 ETM+	219/003	2010/07/31	scan line error
8	Landsat 4-5 TM	221/003	1992/07/03	30	27	Landsat 7 ETM+	220/003	2011/07/25	scan line error
9	Landsat 4-5 TM	220/003	1993/07/15	30	28	-			
10	Landsat 4-5 TM	219/003	1994/08/28	30	29	Landsat 8 OLI/TIRS	217/004	2013/09/19	30
11	Landsat 4-5 TM	215/004	1995/08/19	30	30	Landsat 8 OLI/TIRS	029/240	2014/07/15	30
12	-				31	Landsat 8 OLI/TIRS	216/004	2015/08/01	30
13	-				32	Landsat 8 OLI/TIRS	216/004	2016/07/02	30
14	-				33	Landsat 8 OLI/TIRS	220/003	2017/08/20	30
15	Landsat 7 ETM+	218/003	1999/07/10	30	34	Landsat 8 OLI/TIRS	025/241	2018/07/30	30
16	Landsat 7 ETM+	214/004	2000/08/17	30	35	Landsat 8 OLI/TIRS	215/004	2019/08/21	30
17	Landsat 7 ETM+	214/004	2001/06/17	30	36	Landsat 8 OLI/TIRS	215/004	2020/08/23	30
18	Landsat 7 ETM+	221/003	2002/07/07	30	37	Landsat 8 OLI/TIRS	216/004	2021/08/10	30
19	-				38	Landsat 8 OLI/TIRS	221/003	2022/08/23	30

Landsat images collected

Shorelines

Create transect

Calculate LRR

13

2 types of shorelines

Zone 1, 3, 5: relatively stable shoreline Zone 2, 4: extremely change shoreline

Zone 1, 3, 5: relatively stable shoreline Rate vary: -2 to +3 m/yr

15

Zone 2, 4: extremely change shoreline

Rate vary: -65 to +10 m/yr

The shoreline is relatively stable, except for the glacier's shoreline is strongly eroded

GLACIER AREA CHANGES

Glaciers area tends to decrease in 37 years Aavatsmark, Andreas, Olive has lost more than 50% area

TUNDRA AREA CHANGES

Tundra area tends to increase, but not significantly

20/37 years are extracted, images unavailable or boundary difficult to determine

Conclusion

Remote Sensing + GIS Technique: suitable for monitoring long-term object changes (37 years)

(1) Shoreline change

Relatively stable in zone 1, 3, 5: LRR vary -2 to +3 m/yr, accretion predominate

Strongly eroded in zone 2, 4: LRR vary -65 to +10 m/yr, erosion predominate

Changes are mainly in glacier's shoreline, the remaining shoreline are not significant

(2) Glaciers area tend to decrease

Top 3 largest glaciers area: Aavatsmark, Elise, Andreas lost 63.1%, 35.3%, 54.6%, respectively

(3) Tundra area tend to increase, but not significantly < 10%

THANK YOU!

Q & A

- 7 00

Elfer.

STATISTICS IN CO.

Multi-month average surface temperature anomalies for the Arctic

