Using thermal tracer tests and numerical model to evaluate the layered flow characteristic in a coastal aquifer system

Presenter:許安誼 An-Yi Hsu Advisor:倪春發 Chuen-Fa Ni

Table of contents

Introduction

Coastal aquifer

- With the social and economic development in coastal areas, various problems arise
 - 1. Seawater intrusion

SGD

- Submarine Groundwater Discharge (SGD) is recognized as a fundamental hydrological process that supports many coastal biogeochemical cycles and socialecological systems
- Important land-to-sea material transport pipeline, such as nutrient salts

(Aaron et al., 2021)

Tracer

- The heat source can be regarded as solute transported with groundwater
- (Lin et al.,2021)
 The advantage of using heat as a tracer over other geochemical tracers
 - Low environmental pollution / High spatial resolution (Bense et al., 2016)

Study area

Study area

Introduction	Methodology	Results & Conclusion	Future work

Field test

Distributed Temperature Sensing (DTS) technology enables downhole temperature monitoring to study hydrogeological processes at high frequency and spatial resolution

SILIXA(DTS)

Fiber optical

Field test

Configuration

- Sampling interval= 0.254m
- Measurement time \geq 5 sec ۰
- Duplexed single-ended configuration •

Future work

MODFLOW-2005

- 3D finite-difference ground-water model (USGS)
- Including many packages to handle different conditions

Governing equation:

$$\frac{\partial}{\partial x} \left[K_x \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_y \frac{\partial h}{\partial y} \right] + \frac{\partial}{\partial z} \left[K_z \frac{\partial h}{\partial z} \right] + W = S_s \frac{\partial h}{\partial t}$$

$K_x K_y K_z$	(L/T)	Hydraulic conductivity
h	(L)	Potentiometric head
Ss	(L^{-1})	Specific storage
W	(T^{-1})	Source or sink of water
t	(T)	Time

MT3DMS

- 3D groundwater solute transport model (USGS)
- Simulate the solute transport in soil pore media during groundwater flow.
- Heat transport is analogous to solute transport in groundwater modeling, adapted equation to assign suitable thermal parameters for temperature species

Dispersion and diffusion Advection over and sink

$$\frac{\partial(\theta C^{k})}{\partial t} = \left[\frac{\partial}{\partial x_{i}} \left(\theta D i j \frac{\partial C^{k}}{\partial x_{j}} \right) - \left[\frac{\partial}{\partial x_{i}} \left(\theta V_{i} C^{k} \right) + \left[q_{s} C_{s}^{k} + \Sigma R_{n} \right] \right]$$
Solute transport equation

$$\left(1 + \frac{\rho_{b} K_{d}^{t}}{\theta} \right) \frac{\partial(\theta T)}{\partial t} = \left[\nabla \left[\theta \left(D_{m}^{t} + \alpha \frac{q}{\theta} \right) \nabla T \right] - \left[\nabla (qT) - q_{s}' T_{s} \right]$$
Heat transport equation

 $\begin{array}{l} \theta : \text{porosity of soil} \\ \rho_b : \text{bulk density of solid} \\ \alpha : \text{heat dispersion tensor} \\ q : \text{velocity of groundwater} \\ q'_s : \text{fluid source or sink} \\ t: \text{time} \end{array}$

- Dij: hydrodynamic dispersion coefficient
- $C^k\,$: concentration of species k
- V_i : velocity of groundwater in pore media
- $C_{s}^{k}\ :$ source or sink concentration of species k
- R_n : chemical reaction

 K_d^t : distribution coefficient of thermal

- T: temperature
- D_{m}^{T} : thermal conduction
- T_s: source temperature

Introd	uction		Methodo	ology	Results	& Concl	usion	Future	work
MODF	LOW				٨.	onsert		Bounda	ry
Conce	eptual n	nodel S	etup				: `	No Flow	
Grid si	ze								
Hydra	Hydraulic conductivity (K) : Pumping test								
Top el	evation	: RTK					°h		
Boundary condition : Transient / no flow									
Initial condition : BW01 & BW11 measurement water level									
						MEASUREMENT	r water leve	EL	—BW01
				5.4	\sim			-	—BW11
Grid siz	e			5.2 5.1 S J 4.9		\bigvee	\bigvee	\frown	$\overline{\ }$
	X	Y	Z	H 4.8 H 4.7 H 4.6					
Interval	1m/cell	1m/cell	5m/cell	∐ 4.5 ∀ 4.4 4.3	\wedge	\land		\sim	
Cells	27	27	12	4.2 4.1 4		\bigvee	\searrow		
				3.9 2023/7/8 12:00	2023/7/9 00:00	2023/7/9 12:00	2023/7/10 00:00	0 2023/7/10 12:00	2023/7/11 00:00

TIME

Introduction Methodology	Results & Conclusion	Future work
--------------------------	---------------------------------	-------------

MODFLOW

• The conceptual model has a generally groundwater flow direction is land to sea.

Conclusion

Field test

 Assuming that the roughly direction of groundwater flow is between BW07 and BW08

Simulation

- Now I use the experiment data and observation data to put into the model then established the basic conceptual flow field.
- The conceptual model has a generally groundwater flow direction is land to sea.

Future work

Introduction	Methodology	Results & Conclusion	Future work	
Future work				

- Set smaller grid size in order to see the subtle changes.
- Set different K value in different layers.
- Combine MODFLOW with MT3DMS to create a temperature field.
- Calibrate and validate the model.
- Evaluate the layered flow characteristic in the coastal aquifer system.

Thank you for listening