Geological Storage and Fluid Flow Characteristics of Geothermal Reservoirs in Taiwan: A Case Study of the Datun Volcanic Group and Eastern Slates Areas

> Presenter : Che-Wei Yeh Advisor : Prof. Jia-Jyun Dong Date : 2023/10/27

Outline

- Introduction
- Methodology
- Results
- Conclusions
- Future work

3

• Taiwan is located on the Pacific Ring of Fire and is rich in geothermal resources.

Result

- In recent years, the government has begun to conduct investigations to supplement basic information and increase industry investment.
- Geothermal power generation must meet three conditions:
 - 1. Adequate heat source
 - 2. Water

Introduction

3. Channels for fluids to flow through a rock mass

Methodology

Joint plane

Conclusion

- Foliation plane

Fig.1 Experiment flow diagram

Table.1 Introduction of slate samples

Formation	Sample	Sample number	Sample size	ample size Drilling orientation		Sample figure
Hongye	Slate	SL1~5 SL8~10	$\Phi = 25.5 \text{mm}$ $L = 5 \sim 12 \text{mm}$	foliation-perpendicular (\bot)	- 200~780m	
		SL6 、 7 SL11 、 12		foliation-parallel ($/\!\!/$)		

Introduction Methodology Result Conclusion

Table.2 Introduction of sandstones sample

Formation	Sample	Sample number	Sample size	Sample type	Depth	Measure	Sample figure
Wuchishan	Sandstone	S2	$\Phi = 25.5$ mm L = 7.8mm	Intact	About 1000m	Porosity	
		S4 \ S5	$\Phi = 25.5$ mm L = 11.7mm			Permeability	34
		F1	$\Phi = 25.5$ mm L = 34.9mm	Jointed		Hydraulic & Machenical aperture	

Result

Future work

YOKO2 system

Fig.2 High confining pressure porosity/permeability measuring instrument

Measure Porosity Hydraulic aperture Machenical aperture

Conclusion

Future work

Measuring the porosity of sandstones

Boyle's law

$$P_{i1} \cdot V_s + P_{i2} \cdot (V_l + V_p) = P_f \cdot (V_s + V_l + V_p) \dots$$

$$\Rightarrow V_p = \left(\frac{P_{i1} - P_f}{P_f - P_{i2}}\right) \cdot V_s - V_l \qquad \dots (2)$$
$$\phi = \frac{V_p}{V} \times 100\%$$

- P_{il} : The pressure when the gas flows into V_s (MPa)
- P_{i2} : One atmospheric pressure (MPa)
- P_f : Balance air pressure (MPa)
- V_l : The volume of the thin tube (mm³)
- V_s : The volume of confined space (mm³)
- V_p : The pore volume of rock sample (mm³)
- \vec{V} : The volume of sample (mm³)
- Ø : The porosity of sample (%)

Fig.3 Schematic diagram of porosity measurement system (楊盛博, 2015)

Conclusion

Measuring the permeability of sandstones

Steady state method

$$k_{gas} = \frac{2Q\mu_g L}{A} \times \frac{P_d}{P_u^2 - P_d^2}$$

- k_{gas} : The gas permeability of sample (m²)
- Q: Flow rate of gas (m³/s)
- μ_g : Viscosity coefficient of gas (MPa*s)
- L° : The length of the sample (m)
- A: Cross-sectional area of sample (m²)
- P_u : The pore pressure above the sample (MPa)
- P_d : The pore pressure under the sample (MPa)

Fig.4 Schematic diagram of permeability measurement system (楊盛博, 2015)

Measuring the porosity and permeability of slates

Result

 P_c : Confining Pressure (MPa)

Res. 1 : Reservoir 1

Pulse decay method

Introduction

Methodology

- V_1 : Volume of Reservoir 1 (mm³)
- V_2 : Volume of Reservoir 2 (mm³)
- P_1 : Initial Pressure of Reservoir 1 (MPa) Res. 2 : Reservoir 2
- P₂: Initial Pressure of Reservoir 2 (MPa)

 $P_{I}'(0)$: The air pressure at the moment the experiment started (MPa)

Conclusion

Future work

 $\begin{array}{l} P_{\rm f1} \ \vdots \ Final \ Pressure \ of \ Reservoir \ 1 \\ P_{\rm f2} \ \vdots \ Final \ Pressure \ of \ Reservoir \ 2 \end{array}$

Measuring the porosity and permeability of slates

Methodology

Pulse decay method

Introduction

Fig.5 Experiment concept diagram of pulse decay method

- V_1 : Volume of Reservoir 1 (mm³)
- V_2 : Volume of Reservoir 2 (mm³)
- Res. 2 : Reservoir 2 P_1 : Initial Pressure of Reservoir 1 (MPa)
- P_2 : Initial Pressure of Reservoir 2 (MPa)

 $P_{i}(0)$: The air pressure at the moment the experiment started (MPa)

$$P_{1}'(0) \cdot V_{1} + P_{2} \cdot (V_{2} + V_{p})$$

= $P_{f} \cdot (V_{1} + V_{2} + V_{p})$...(3)

Future work

porosity

Result

 P_c : Confining Pressure (MPa)

Res. 1 : Reservoir 1

$$\Rightarrow V_p = \left(\frac{P_1'(0) - P_f}{P_f - P_2}\right) \cdot V_1 - V_2 \quad \dots (4)$$

$$P_f: \text{ Balance air pressure}$$

$$P_f$$
: Balance air pressure

$$P_1 - P_f = \Delta P \left(\frac{V_2}{V_1} + V_2\right) e^{-\alpha t} \dots (5)$$

permeability

 ΔP : $P'_1(0) - P_2$ t: Time (s)

$$\alpha = \frac{k_{gas}A}{\mu_g\beta L} \left(\frac{1}{V_1} + \frac{1}{V_2}\right) \qquad \dots (6)$$

- k_{gas} : The gas permeability of sample (m²)
- μ_g : Viscosity coefficient of gas (MPa*s)
- L: The length of the sample (m)
- A: Cross-sectional area of sample (m²)
- α : Attenuation coefficient

Conclusion

 β : Volume compressibility coefficient of gas (MPa⁻¹) 11

Measuring the porosity and permeability of slates

Pulse decay method applied in YOKO2 system

Methodology

Introduction

Result

Conclusion

Fig.6 Concept diagram of YOKO2 porosity/permeability simultaneous measurement system (戴秉倫, 2016)

Porosity of slates

Fig.7 The porosity of foliation-perpendicular (left) and foliation-parallel (right)

Permeability of slates

Fig.8 The permeability of foliation-perpendicular (left) and foliation-parallel (right)

Porosity and Permeability of intact sandstones

Result

Methodology

Steady state method

Introduction

$$e = \sqrt[3]{\frac{Q}{\Delta P/L} \times \frac{12\mu_g}{w}}$$

- e: The hydraulic aperture of sample (μ m)
- Q: Flow rate of gas (m³/s)
- w: The width of the joint
- μ_g : Viscosity coefficient of gas (MPa*s)
- L° : The length of the sample (m)

 ΔP : $(P_u^2 - P_d^2)/2P_d$ (MPa)

- P_d : The pore pressure above the sample (MPa)
- P_u : The pore pressure under the sample (MPa)

Conclusion

Fig.11 The hydraulic aperture of sandstones for F1

Hydraulic and Machenical aperture of jointed sandstone

Result

$$P_{i1} \cdot V_s + P_{i2} \cdot (V_l + V_p) = P_f \cdot (V_s + V_l + V_j)$$
$$\Rightarrow V_j = \left(\frac{P_{i1} - P_f}{P_f - P_{i2}}\right) \cdot V_s - V_l$$
$$E = \frac{V_j}{A_j}$$

Methodology

E: The machenical aperture of sample (mm) V_j : The volume of joint (mm³)

 A_j : The area of joint (mm²)

Introduction

Conclusion

Fig.12 The machenical aperture of sandstones for F1

Introduction Methodology Result Conclusion Future work

Equivalent hydraulic aperture of intact sandstones

S4 and S5

Contribution of intact rock to hydraulic aperture

Result

Methodology

Table.3 Hydraulic apertures of each sandstone sample under different effective pressures

Conclusion

Future work

Pe	e(μ <i>m</i>)	e ₄ (μm)	e ₅ (μm)	e_4/e	e ₅ /e
3	27.51	0.85	1.11	3.10%	4.02%
5	22.49	0.77	1.00	3.44%	4.45%
8	18.69	0.71	0.91	3.79%	4.88%
10	17.12	0.68	0.87	3.96%	5.10%
15	14.59	0.63	0.81	4.30%	5.53%
20	13.03	0.59	0.76	4.56%	5.85%
30	11.10	0.55	0.70	4.95%	6.34%
40	9.91	0.52	0.67	5.25%	6.71%
50	9.08	0.50	0.64	5.50%	7.02%
60	8.45	0.48	0.61	5.70%	7.27%

 P_e : Effective confining pressure

Introduction

- *e*: Hydraulic aperture of F1
- e_4 : The equivalent hydraulic aperture of S4
- e_5 : The equivalent hydraulic aperture of S5

- parallel foliation orientation and the perpendicular foliation orientation. With generally higher permeability in the parallel foliation orientation.
- For sandstone samples, the porosity was 3.7% to 4.7%, and permeability ranged from 10⁻¹⁶ to 10⁻¹⁷ m².
- For sandstone sample with joints, hydraulic apertures varied from 9 to $26 \,\mu$ m, and mechanical apertures ranged from 600 to 730 μ m.
- The jointed sandstone exhibited significantly greater contributions to fluid flow than intact rock.

Thank you for your attention

Source : GSMMA

$$k_{gas} = \frac{2Q\mu_g L}{A} \times \frac{P_d}{P_u^2 - P_d^2} \Rightarrow Q = \frac{k_{gas}A}{\mu_g} \times \frac{\Delta P}{L} \qquad \qquad \frac{\Delta P}{L} = \frac{P_u^2 - P_d^2}{2LP_d}$$

$$Q = \frac{e^3 w}{12\mu_g} \times \frac{\Delta P}{L}$$

$$\frac{k_{gas}A}{\mu_g} \times \frac{\Delta P}{L} = \frac{e^3 w}{12\mu_g} \times \frac{\Delta P}{L}$$