

APPLYING THE VARIABLY SATURATED FLOW MODEL TO SIMULATE GROUNDWATER FLOW IN PINGTUNG PLAIN BY USING THMC

PRESENTER: Thanh-Nhan, Pham

Advisor: Prof. Jui-Sheng, Chen

Date: 20th Oct 2023

II METHODOLOGY

III PRELIMINARY RESULT

INTRODUCTION

Groundwater is an important water resource for human life with different purpose of using:

The groundwater withdrawal amount in Asia account for the majority is 72% of global usage. (Lee et al., 2018)

Water cycle (sciencefacts)

Seawater intrusion, and land subsidence in over the past 5 decades (Ting et al., 1998)

Understanding the behavior of groundwater – groundwater flow with the aim of using this resource in a reasonable and sustainable way.

INTRODUCTION

- Study area Pingtung plain
- □ 1210 km²
 - → Natural boundary
- → High annual rainfall rate
- Unconsolidated Quaternary

Hydrogeological

- Aquifer: high permeable coarse sediment.
- Aquitard: low permeable fine sediments

Objective

Applying the variably saturated flow model to simulate groundwater flow in Pingtung plain by using THMC

Applying under saturated and unsaturated mode

INTRODUCTION

THMC software application

- \checkmark Wide application
 - Graphical Users Interface (GUI) display
 - Accurately predict subsurface process

II) METHODOLOGY (III)

Governing equation for flow through saturated-unsaturated media using in software follow below equation:

 $\frac{\rho}{\rho_0} F \frac{\partial h}{\partial t} = \nabla \cdot \left[\mathbf{K} \cdot \left(\nabla h + \frac{\rho}{\rho_0} \nabla z \right) \right] + \frac{\rho^*}{\rho_0} q$

Governing equation

Boundary Condition

Data input

$$\begin{array}{l} \theta: \text{effective moisture content } (L^3/L^3) \\ \text{h: pressure head } (\text{L}) \\ \text{t: time (T)} \\ \text{z: potential head } (\text{L}) \\ q: \text{source/sink of fluid } [(L^3/L^3)/T] \\ \rho_0: \text{referenced fluid density at zero chemical concentration } (M/L^3) \\ \rho: \text{fluid density with dissolved chemical concentrations } (M/L^3) \\ \rho^*: \text{fluid density of either injection } (\rho^*) \text{ or withdraw } (= \rho) \\ \mu_0: \text{fluid dynamic viscosity at zero chemical concentration } [(M/L)/T] \\ \mu: \text{fluid dynamic viscosity with dissolved chemical concentrations } [(M/L)/T] \\ \mu: \text{fluid dynamic viscosity with dissolved chemical concentrations } [(M/L)/T] \\ \beta': \text{ modified compressibility of the soil matrix } (1/L) \\ \beta': \text{ modified compressibility of the liquid } (1/L) \\ n_e: \text{ effective porosity } (L^3/L^3) \\ \text{S: degree of effective saturation of water } \\ \text{g: gravity } (L/T^2) \\ \text{k: permeability tensor } (L^2) \\ \text{k}_{so}: \text{ referenced saturated hydraulic conductivity tensor } (L/T) \\ k_r: \text{ relative permeability or relative hydraulic conductivity} \\ \end{array}$$

(dimensionless)

F: generalized storage coefficient (1/L)

$$F = \alpha' \frac{\theta}{n_e} + \beta' \theta + n_e \frac{dS}{dh}$$

(Yeh et al., 1994a, 1994b)

K : hydraulic conductivity tensor (L/T)

$$\mathbf{K} = \frac{\rho g}{\mu} \mathbf{k} = \frac{\rho / \rho_0}{\mu / \mu_0} \frac{\rho_0 g}{\mu_0} \mathbf{k}_s k_r = \frac{\rho / \rho_0}{\mu / \mu_0} \mathbf{K}_{so} k_r$$

Darcy's velocity (L/T)

$$V = -\mathbf{K} \cdot \left(\frac{\rho_0}{\rho} \nabla h + \nabla z\right)$$

II) METHODOLOGY (III

Governing

equation

Boundary

Condition

Data input

• K value reference:

Aquifer: 148 wells \rightarrow Pumping test result from CGS report

Aquitard: According to type of rock and giving K value base on reference table of Domenico and Schwartz (1998)

Layer	Material	K value range (m/day)	Average K (m/day)
1	Material 8	0.8640 - 8.64864	5.7294
2	Aquifer1	0.0057 - 461.52	89.681
3	Aquitard1	0.8640 - 8.64864	4.1285
4	Aquifer2	0.4320 - 171.792	34.291
5	Aquitard2	0.8640 - 8.64864	2.9126
6	Aquifer3	2.2920 - 171.936	40.076
7	Aquitard3	0.8640 - 8.64864	6.0537
8	Aquifer4	5.472 - 14.5152	9.5688

II) METHODOLOGY (III) (I'

Groundwater level: daily data 2020 – 2022 of 122 stations (WRA) Rainfall rate: daily data 2020 – 2022 of 19 stations (WRA)

Governing equation

Boundary Condition

Data input

			Unit:	mm/year
tation ID	Station name	2020	2021	2022
670P001	Jinsha	2192	3255	1244
730P021	Guxia	2286	3698	1350
730P060	Pingtung (5)	1996	3536	1241
730P081	Meinong (2)	1744	: 776	1580
730P107	Qishan (4)	1770	7	1380
7200100	Car Diman	0100	,	1462

Using Thiessen method to determine rainfall distribution zone

rainfall distribution zone				
10				1803
730P150	Gouping	1797		1437
730P151	Yuanfu Guozhong	1631	ó	1522
730P152	Xinzhuang School	2118	5141	1077
740P049	Salin	2136	3737	1413
740P050	Kanding	1941	3447	1182
740P051	Taiwu (2)	3270	5658	1762
760P011	Nanhe	2123	3453	1117
760P013	Xin Laiyi	2694	4962	1447
790P002	Shiwen	2439	3521	1161

14

GW level station
 Rainfall station

Total

908.26

PRELIMINARY RESULT III **Groundwater level and rainfall distribution relationship** Xinwei (1) 145 2000 1800 144 1600 143 1400 142 1200 141 1000 800 600 140 139 400 138 200 137 Apr-2020 Aug-2020 Jan-2020 Feb-2020 Mar-2020 May-2020 Jul-2020 Sep-2020 Apr-2021 May-2021 Apr-2022 May-2022 Sep-2022 Jun-2020 Oct-2020 Nov-2020 Dec-2020 Sep-2021 Jan-2021 Feb-2021 Jun-2021 Jan-2022 Feb-2022 Mar-2022 Jul-2022 Nov-2022 Dec-2022 Mar-2021 Jul-2021 Aug-2021 Oct-2021 Nov-2021 Dec-2021 Jun-2022 Aug-2022 Oct-2022 Rainfall (mm/month) ——GW level (m) Meinong (1) 60 2000 50 1500 40 ten Am 30 1000 20 500 10 0 Jun-2021 Apr-2022 Jan-2020 Mar-2020 May-2020 Jun-2020 Jul-2020 Aug-2020 Sep-2020 Apr-2021 Aug-2021 Aug-2022 Feb-2020 Apr-2020 Oct-2020 Nov-2020 Dec-2020 Jan-2021 Jul-2021 Sep-2021 Nov-2021 Dec-2021 Jan-2022 Feb-2022 Mar-2022 Oct-2022 Nov-2022 Feb-2021 Mar-2021 May-2021 Oct-2021 May-2022 Jun-2022 Jul-2022 Sep-2022 Dec-2022 Rainfall (mm/month) -----GW level (m) Groundwater immediately increase after raining time

PRELIMINARY RESULT III **Groundwater level and rainfall distribution relationship** Linyuan (1) 1200 3 2.5 1000 2 800 1.5 600 400 0.5 200 0 Aug-2020 Jan-2020 Feb-2020 Mar-2020 Apr-2020 May-2020 Jun-2020 Jul-2020 Sep-2020 Oct-2020 Nov-2020 Dec-2020 Jan-2021 Feb-2021 Jun-2021 Aug-2021 Oct-2021 Jan-2022 Feb-2022 Mar-2022 May-2022 Jun-2022 Jul-2022 Aug-2022 Sep-2022 Oct-2022 Nov-2022 Dec-2022 Mar-2021 Apr-2021 May-2021 Jul-2021 Sep-2021 Dec-2021 Apr-2022 Nov-2021 Rainfall (mm/month) GW level (m) Datan (1) 0.5 1600 1400 0 1200 -0.5 1000 800 -1 600 -1.5 400 -2 200 -2.5 Dec-2022 Jan-2020 Mar-2020 Apr-2020 May-2020 Jun-2020 Sep-2020 Mar-2021 Apr-2021 May-2021 Dec-2021 May-2022 Jul-2022 Feb-2020 Jul-2020 Aug-2020 Oct-2020 Vov-2020 Dec-2020 Jan-2021 Feb-2021 Jun-2021 Aug-2021 Sep-2021 Nov-2021 Jan-2022 Feb-2022 Mar-2022 Apr-2022 Jun-2022 Aug-2022 Sep-2022 Oct-2022 Vov-2022 Jul-2021 Oct-2021 Rainfall (mm/month) GW level (m) Groundwater increase after a month from raining time

FUTURE WORK

IV

Ш

Ш

Sentinel image

Mosaic with geometric correction

Target classification (source: USCS)

THANK YOU FOR YOUR ATTENTION

Q & A

FUTURE WORK

Primarily simplified data test result for building study area domain

- The limited range of layers have not in expect
- Density in the middle too larger

METHODOLOGY III (

Governing equation for flow through saturated-unsaturated media follow below equation:

$$\frac{\rho}{\rho_0} F \frac{\partial h}{\partial t} = \nabla \cdot \left[\mathbf{K} \cdot \left(\nabla h + \frac{p}{p_0} \nabla z \right) \right] + \frac{\rho^*}{\rho_0} q \quad \text{(Yeh et)}$$

(Yeh et al., 1994a, 1994b)

- θ : effective moisture content (L^3/L^3)
- h: pressure head (L)
- t: time (T)
- z: potential head (L)
- q: source/sink of fluid $[(L^3/L^3)/T]$
- ρ_0 : referenced fluid density at zero chemical concentration (M/L^3)
- ρ : fluid density with dissolved chemical concentrations (M/L^3)
- ρ^* : fluid density of either injection (ρ^*) or withdraw (= ρ)
- μ_0 : fluid dynamic viscosity at zero chemical concentration [(M/L)/T]
- μ : fluid dynamic viscosity with dissolved chemical concentrations [(M/L)/T]
- α' : modified compressibility of the soil matrix (1/L)
- β' : modified compressibility of the liquid (1/L)
- n_e : effective porosity (L^3/L^3)
- S: degree of effective saturation of water g: gravity (L/T^2)
- **k**: permeability tensor (L^2)
 - k_s : saturated permeability tensor (L^2)
 - K_{so} : referenced saturated hydraulic conductivity tensor (L/T)
 - k_r : relative permeability or relative hydraulic conductivity (dimensionless)

F: generalized storage coefficient (1/L)

$$F = \alpha' \frac{\theta}{n_e} + \beta' \theta + n_e \frac{dS}{dh}$$

K : hydraulic conductivity tensor (L/T) with

$$\mathbf{K} = \frac{\rho g}{\mu} \mathbf{k} = \frac{\rho / \rho_0}{\mu / \mu_0} \frac{\rho_0 g}{\mu_0} \mathbf{k}_s k_r = \frac{\rho / \rho_0}{\mu / \mu_0} \mathbf{K}_{so} k_r$$

Darcy's velocity (L/T)
$$V = -\mathbf{K} \cdot \left(\frac{\rho_0}{\rho} \nabla h + \nabla z\right)$$

METHODOLOGY (III)

Governing equation

Π

Data input

• Conceptual hydrological: build up from 42 borehole cores (CGS website)

K value reference:

Aquifer: 148 wells \rightarrow Pumping test result from CGS report Aquitard: According to type of rock and giving K value base on reference table of Domenico and Schwartz (1998)

Material	K lowest (m/day)	K highest (m/day)
Fine sand	0.017280000	17.280000
Silt	0.000086400	1.728000
Clay	0.00000864	0.000432

- Groundwater level: daily data from 2020 2022 of 122 stations (WRA)
- Rainfall rate: daily data from 2020 2022 of 8 stations (WRA)

Legendary

Material 8
Aquifer1
Aquitard1
Aquifer2
Aquitard2
Aquifer3
Aquitard3
Aquifer4

INTRODUCTION

THMC software

TTT

IV

Duona wei(1) *Xinfeng (1) 山洲 * Taishan (1) Kanbu (1) Guanfu (1) **旱港(1)**新南(1)。 如(1) San Dimen 溪埔(1) Xin Majia 大樹(1 Dexie Pingtung (5) Qingxi (1) 海豐(1) Jianxing (

Liugui (4)

11.575

31

新威(1)

。高樹(1)

泰山(1)

。開始

、瑪家、

赤山(1) 米

。吉,

鹽埔(1)。

▲彭厝(1)

繁華

The plain sediments can divide into 8 layers:

- Aquifer: high permeable coarse sediments, ranging from medium sand to gravel.
- Aquitard: low permeable fine sediments, ranging from clay to fine sand

PRELIMINARY RESULT

Conceptual hydrological domain

III

Create triangular grid and generate 3D domain

Π

