LEVEL

CATING

COMPOSICION

二日本 かいして

A mechanism of fluid exchange associated to CO₂ leakage along active fault during geologic storage

Zhang, L., Zhang, S., Jiang, W., Wang, Z., Li, J., & Bian, Y. (2018). *Energy*.

> Advisor : Prof. Jui-Sheng Chen Student : Gia-Huy Lam Date : 2023/11/24

ACRESACES

MORTER

ALL INTERNO

3-10, 101-21-53

SOLPY LOD

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

	Pump well		njection well			Pump well	
50 m	Low permeability layer						Î
100 m	Freshwater aquifer	Pressure	monitoring poi	int			
50 m	Caprock						Ε
150 m →⇒	Saline aquifer ← Brine		F_A CO2	F_B	→式	4	400
50 m	Low permeability layer						
1		5,000 m					•

CO2 SEQUESTRATION

- Carbon Capture and Storage (CCS)
- Capturing carbon dioxide emissions
- The most effective way to reduce GHGs and mitigate the impacts of climate change.
- **Deep saline aquifers** is one of the main candidates to cut anthropogenic CO₂ emissions.
- Caprock is a natural barrier to prevent the injected
 CO₂ escaping from reservoirs.

FLUID EXCHANGE

Associated to **CO₂ leakage, brine** and **freshwater** would escape or lose along the fault from their respective formation.

Annunziatellis et al. (2008) carried out a natural test to investigate CO₂ migration.

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

Kampman et al.(2014) examined the reactive fluid flow in the reservoirs, caprocks and faults during upward migration of CO₂.

Miocic et al. (2016) investigated 76 naturally occurring natural CO₂ stores in the worldwide, to understand the geologic controls on long term storage performance.

All of the authors **emphasized** that the **sealing capacity** of the fault and **the fluid exchange** need to be **evaluated and charecterized comprehensive**.

Employ a 3-D numerical model based on TOUGH2/ECO2N to investigate fluid exchange related to CO2 leakage along activated faults.

-

-

- Understand the implications of fluid exchange by comparing CO2 and brine leakage under different conditions, with and without pump wells.
- Conducts parametric analyses of leakage rates and quantities, considering factors such as fault permeability, saline aquifer permeability, and fault width

50 m

100 m

50 m

150 m

50 m

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

CO₂

The opened or activated fault maybe exists in the caprock, which makes that CO₂, brine and freshwater would leak or lose along the fault.

A fluid exchange would certainly occur, associated to CO₂ leakage along activated fault.

Two faults exist in the caprock:

Brine

Saline aquifer

Low permeability layer

- + Depth of 200m
- + Fault zone extents 130m and has the width of 12m
- + Dip angle 25°
- Injection well is located in the center of the physical model
- The distence between injection well and pump wells is 2000m

5,000 m

The distence between F_A and the injection well is 500m

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

N

NUMERICAL MODEL

- Grid blocks consisted: 107,748 (73 *41 *36).
- The mesh refinement was carried out around the faults and injection/pump wells.
- > Isothermal conditions were used for simplifying.

INITIAL BOUNDARY:

- Impermeable boundaries were set on the top and bottom surfaces.
- Closed boundaries were set at the other surfaces.

The basic mass and energy balance equations used in this model was shown as following:

$$\frac{d}{dt}\int_{V_n} M^K dV_n = \int_{T_n} F^K n dT_n + \int_{V_n} q^K dV_n$$

Where: V_n : an arbitrary subdomain of the flow system T_n : the close surface of the subdomain V_n *M*: quantity of mass or energy/volume. *F*:heat flux between the volume elements *q*: denotes sinks and sources *n*: a normal vector on surface element *K*: mass component

NUMERICAL MODEL

Initial conditions	Value	Table 1 Input parameters.		
		Properties	Values	
Temperature	49 °C	Rock compressibility (Pa ⁻¹) Rock grain density (kg/s) Rock grain specific heat (J/kg °C) Formation heat conductivity (W/m °C)	$\begin{array}{c} 4.5\times 10^{-10}\\ 2600\\ 920\\ 2.51\end{array}$	
Pressure	9 Mpa	λ: index S _{lr} : residual liquid saturation S _{ls} : maximum liquid saturation	0.457 0.3 1.0	
Salt mass fraction of saline aquifer	0.6%	S _{gr} : residual gas saturation P ₀ : pressure coefficient (kPa) Porosity of fault (%) Porosity of freshwater aquifer (%)	0.05 19.59 30 15	
CO2 injected rate	10 kg/s	Porosity of saline aquifer (%) Porosity of caprock (%) Porosity of lower permeability layer (%)	15 6 2	
Brine pump rate	5 kg/s	Permeability of fault (mD) Permeability of freshwater aquifer (mD) Permeability of saline aquifer (mD)	590 59 59	
Simulation time	20 years	Permeability of caprock (mD) Permeability of lower permeability layer (mD)	5.9×10^{-4} 5.9×10^{-5}	

Mechanism of fluid exchange MIGRATION OF GAS CO2

- The CO₂ plume just reached the opened or activated fault before the 5 year.
- The **ratio of leakage amount is 1: 38,07** compare to the time before (T= 5 year).
- CO₂ leakage has just occurred along F_A, except of F_B.
- Associate to that point, the fluid exchange definitely occured.
- The maximum saturation of gas CO₂ decreases from 0.568 to 0.438 with time at the period of 10 year to 20 year.

The distribution of gas CO₂ saturation

FLUID EXCHANGE MECHANISM BASED ON LEAKAGE RATE

MODEL

DESCRIPTION

Major fluid exchange from F_A to F_B

- CO2 leaking occurs firstly along F_A into freshwater aquifer, then freshwater leakage will happen.
- CO2 leakage and freshwater leakage have increased leakage rate of each other.
- The fluid exchange between CO2 and freshwater is disadvantageous for CO2 geological storage.
- The maximum leakage rates: + CO₂ via F_A: 46.13 kt/yr.
 + Freshwater via F_B: 47.20 kt/yr.

Minor fluid change in F_A

- The leakage of freshwater and brine slowly increased via F_A before 5 year.
- > Brine leakage along F_A reach 0 kt/year at T = 6 year.

Minor fluid change in F_B

- At first time, the formation pressure near F_B increases gradually as CO2 injecting continuously.
- A minor fluid exchange that brine leaks upward via F_B and F_A exists in F_B at T < 6 year.</p>

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

MODEL DESCRIPTION

Leakage amount in fluid exchange

- The leakage amounts of freshwater and brine along F_A as well as the leakage amount of brine along F_B are small relatively.
- ➢ No CO₂ reaches F_B in the process of CO₂ leakage.
- CO2 escape along F_A and freshwater loss along F_B just form the major fluid exchange from F_A to F_B, indicates the largest effect on the fluid exchange.

Leakage amount	Along F_A (Mt)	Along F_B (Mt)		
CO ₂	0.413	0		
Brine	0.018	0.002		
Freshwater	0.019	0.412		

Leakage amount at the T - 20 year

MODEL DESCRIPTION

RESULT DISCUS

Implication from pump well

To investigate the difference of setting and not setting pump wells on the fluid exchange, a numerical model of not setting pump wells was developed. The comparisons were focused on the pressure, leakage rate as well as leakage amount.

Comparison of Pressure

- Before 10 year, the pressure of saline aquifer for Model_nspw increases quickly, while the pressure for Model_spw increases slowly.
- Setting pump wells can slow down the increasing of pressure of saline aquifer
- For Model_nspw, more disadvantageous for CO2 geological storage.

Maximum pressure at the T <10 year

Aquifer	Maximum point	imum pressure of monitoring		
	(Мра)			
	spw	nspw		
Saline	9.40	12.45		
Freshwater	7.79	10.80		

MODEL DESCRIPTION

Comparison of Leakage rate

- Coresponding to pressure comparison, more disadvantageous for CO₂ geological storage.
- The leakage rate of brine remains a high level due to the pressure of saline aquifer too high.
- The pressure of saline aquifer is higher for Model_nspw, restraining the freshwater to leak downward.

Maximum leakage rate at the T < 10 year

Fluid	Maximum leakage rates (kt/year)			
	spw	nspw		
CO2	46.13	62.13		
Freshwater	-	-		
Brine	-	131.50		

MODEL DESCRIPTION

RESULT DISCUS 50 m 50 m

Leakage amount comparison

- > Setting pump wells can decrease effectively the leakage amount of CO₂.
- The leakage amount of brine has an obvious decreasing of more than 95% due to setting pump wells.
- The leakage amounts of freshwater for Model_spw closely to 3 times for Model_nspw.

Implication from pump well

From the perspective of preventing CO₂ and brine leakages, setting pump wells can be regarded as an important implication for the fluid exchange associated to CO₂ leakage along fault.

MODEL DESCRIPTION

RESULT A

PARAMETRIC ANALYSIS

The targets investigated are **leakage rates** and **amounts of CO**₂ via F_A and **freshwater** via F_B. In this parameteric analysis, **other parameters** keep **constant**, while **one parameter changes**.

Effect of permeability of fault to the leakage rate and leakage amount

- The maximum leakage rates of CO₂ are 12.27 kt/yr, 37.31 kt/yr, 46.13 kt/yr and 48.58 kt/yr, under the fault permeability of 90 mD, 340 mD, 590 mD and 840 mD.
- Correspondingly, the maximum leakage rates of freshwater are 8.60 kt/yr, 35.42 kt/yr, 47.20 kt/yr and 49.51 kt/yr, respectively.
- Under the fault permeability of 90 mD, 340 mD, 590 mD and 840 mD, the leakage amounts of CO₂ are 0.098 Mt, 0.359 Mt, 0.413 Mt and 0.432 Mt respectively.
- Correspondingly, the leakage amounts of freshwater are 0.083 Mt, 0.356 Mt, 0.412 Mt and 0.430 Mt, respectively.

Overall, the fluid exchange is enhanced with the increasing of the fault permeability.

MODEL DESCRIPTION

Leakage rates considering different permeability of saline aquifer

Pump well Injection well Pump well 50 m Low permeability layer Pressure monitoring point 100 m DISCUSS Freshwater aquifer 50 m Caprock FA FВ Saline aquifer 150 . Brine CO₂ Low permeability lave

 \triangleright Corresponding to the results above, the permeability of saline aquifer has a great influence on the fluid exchange. For the saline aquifer of the higher permeability, the fluid exchange is aggravated obviously.

RESULT

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

Effect of fault width of F_A

- When changing the width of F_A from 6 24m, the trend of leakage rate and leakage amount is the same with results above.
- The trend of results are not too clearly at some times of the period.
- However, it can consider that the larger width will get the higher leakage rate, higher leakage amount at T = 10 year and reduce to T= 20 year and of CO₂ and freshwater.

Leakage rates considering different width of fault A,B

MODEL DESCRIPTION

RESULT AND DISCUSSION

CONCLUSIONS

Effect of fault width of F_B

- When changing the width of F_B from 6 24m, the trend of leakage rate and leakage amount is the same with results above.
- The trend of results are easy to observe the different at different times of the period.
- However, it can consider that the larger width will get the higher leakage rate (T= 10 year), reduce leakage rate to T= 20 year and
- With leakage amount of CO₂ and freshwater, it can obviously observe the increasing through the period.

- INTRODUCTION
 MODEL DESCRIPTION
 RESULT AND DISCUSSION
 CONCLUSIONS

 A 3-D numerical model was developed based on TOUGH2/ECO2N to explore the mechanisms of fluid exchange resulting from CO2 leakage along activated faults. The model specifically focused on the interaction between CO2, brine, and freshwater.
- > The fluid exchange contains the major fluid exchange of CO₂ and freshwater from F_A to F_B.
- As a result, setting pump wells are beneficial for CO₂ geological storage, especially when considering the two faults.
- Parametric analysis was investigated to obtain the effect of the permeability of fault, the permeability of saline aquifer and the fault width on the fluid exchange. Especially, the fluid exchange is herein reflected by leakage rates and amounts of CO2 via F_A and freshwater via F_B.

THANKS FOR YOUR LISTENING!