

NATIONAL CENTRAL UNIVERSITY Graduate Institute of Applied Geology

Landform Behaviors in Kaffiøyra Under Climate Change Conditions Using Remote Sensing and GIS Approach

Presenter: Vo Hong Son Advisor: Prof. Chuen-Fa Ni

Date: 2023/11/10

Introduction

Climate change: long-term change in average weather patterns

Key indicators

Temperature increases;

Rising sea levels;

Ice loss at poles & in mountain glaciers;

Frequency & severity changes in extreme weather: hurricanes, heatwaves, wildfires, droughts, floods, precipitation;

Cloud & vegetation cover changes.

https://www.pinterest.com/pin/17944098493519189/

Introduction

Objectives

- Quantifying the shoreline change rates from 1985 2023 by Landsat images
- Determining the changes of glacier and outwash area
- Estimating the glacier volume changes

Understanding the behaviors of Svalbard's landform under climate change condition for almost 40 years

PART I

Shoreline, Glacier, Outwash Changes

Methods

Monitoring long-term shoreline changes => Big problem

Integrating remote sensing + GIS technique

Landsat images

Digital Shoreline Analysis System (DSAS)

- Freely software work with ArcGIS
- Computing the rate-of-change statistics for a time series of shoreline (Himmelstoss et al., 2021)

cost-efficient tool for monitor long-term objects change

Transects cast perpendicular from reference baseline to shorelines

Landsat images collected

No.	Sensor	Frame	Acquisition date	Spatial resolution (m)	No.	Sensors	Frame	Acquisition date	Spatial resolution (m)
1	Landsat 4-5 TM	216/004	1985/08/30	30	21	Landsat 7 ETM+	220/003	2005/07/24	scan line error
2	Landsat 4-5 TM	217/004	1986/07/07	30	22	Landsat 4-5 TM	216/004	2006/07/23	30
3	Landsat 4-5 TM	217/004	1987/07/10	30	23	-			
4	Landsat 4-5 TM	216/004	1988/09/23	30	24	-			
5	Landsat 4-5 TM	217/004	1989/07/31	30	25	-			
6	Landsat 4-5 TM	221/003	1990/06/28	30	26	Landsat 7 ETM+	219/003	2010/07/31	scan line error
7	-				27	Landsat 7 ETM+	220/003	2011/07/25	scan line error
8	Landsat 4-5 TM	221/003	1992/07/03	30	28	-			
9	Landsat 4-5 TM	220/003	1993/07/15	30	29	Landsat 8 OLI/TIRS	217/004	2013/09/19	30
10	Landsat 4-5 TM	219/003	1994/08/28	30	30	Landsat 8 OLI/TIRS	029/240	2014/07/15	30
11	Landsat 4-5 TM	215/004	1995/08/19	30	31	Landsat 8 OLI/TIRS	216/004	2015/08/01	30
12	-				32	Landsat 8 OLI/TIRS	216/004	2016/07/02	30
13	-				33	Landsat 8 OLI/TIRS	220/003	2017/08/20	30
14	-				34	Landsat 8 OLI/TIRS	025/241	2018/07/30	30
15	Landsat 7 ETM+	218/003	1999/07/10	30	35	Landsat 8 OLI/TIRS	215/004	2019/08/21	30
16	Landsat 7 ETM+	214/004	2000/08/17	30	36	Landsat 8 OLI/TIRS	215/004	2020/08/23	30
17	Landsat 7 ETM+	214/004	2001/06/17	30	37	Landsat 8 OLI/TIRS	216/004	2021/08/10	30
18	Landsat 7 ETM+	221/003	2002/07/07	30	38	Landsat 8 OLI/TIRS	221/003	2022/08/23	30
19	-				39	Landsat 8 OLI/TIRS	218/003	2023/07/20	30
20	-					Jun., Jul., Au	g., Sep	ot. : summ	er time

8

Shoreline, glacier, outwash extraction

Shorelines & baselines

Create transects

2

Calculate LRR

3

Aavatsmarkbreen

12°20'E

Zone 4

Zone

ъ

10

- Zone 1, 3, 5: relatively stable shoreline Rate vary: -2 to +3 m/yr
- Accretion predominate

Zone 2, 4: extremely change shoreline

Rate vary: -64.7 to +10 m/yr

Erosion predominate

The land's shoreline is relatively stable, glacier's shoreline (terminus) is strongly eroded

GLACIER TERMINUS AREA CHANGES

Glacier terminus area tends to decrease in 38 years Aavatsmark, Andreas, Olive has lost more than 50% area

Outwash area tends to increase, but not significantly

21/38 years are extracted, images unavailable or boundary difficult to determine

Conclusion

Remote Sensing + GIS Technique: suitable for monitoring long-term object changes (38 years) The changes occur mainly at glacier terminus, whether on land or sea

(1) Shoreline change

Relatively stable in zone 1, 3, 5: LRR vary -2 to +3 m/yr, accretion predominate

- Strongly eroded in zone 2, 4: LRR vary -64.7 to +10 m/yr, erosion predominate
- Changes are mainly in glacier's shoreline (terminus), land's shoreline not significant

(2) Glacier terminus area tend to decrease

Top 3 largest glaciers area: Aavatsmark, Elise, Andreas lost 63.1%, 35.3%, 54.6%, respectively

(3) Outwash area tend to increase, but not significantly < 10%

PART II

Glacier Volume Loss in Vertical/Horizontal Direction

Glacier volume changes

Late 2000s: 33 775 km² glaciers, cover 57% land of Svalbard

Climate change: glaciers - significant indicators

Changes in glacier thickness: key indicator reflect melting process

Glacier melting affect: regional water resources, hydrological cycles

Estimating the glacier volume loss using multi-temporal DEMs

DATA

	ASTER	ICESat	ICESat-2	
Full name	The Advanced Spaceborne Thermal Emission and Reflection Radiometer	Ice, Cloud, land Elevation Satellite	Ice, Cloud, land Elevation Satellite-2	
Resolution	15 – 90 m²			
Objects	Land surface temp., emissivity, reflectance, elevation	Ice sheet mass balance, cloud, aerosol heights, land topography, vegetation	Retreating glaciers, shrinking sea ice, melting ice sheets, thickness sea ice, vegetation	
Period	1999 - present	2003 – 2009	2018 - present	

2m – Kaffiøyra's DEM

Future works

- Collect the satellite images data
- Process and generate DEMs
- Estimate the glacier volume loss in Kaffiøyra

THANK YOU!

Q & A

7 50

2 Parce

Fig. 3. Potential freshwater inputs in a fjord with a tidewater glacier. 1) subglacial discharge fed by surface melt in summer (1a), basal ice melt (1b) or delayed outflow of internally stored meltwater (1c). 2) Submarine groundwater discharge. 3) surface runoff in summer (glacial ice and snow- melt). 4) solid ice discharge. 5) submarine melt of (5a) the glacier terminus, or (5b) icebergs, including ice melange and potentially sea ice. 6) precipitation.