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Offset channels at Wallace Creek along the Carrizo Plain segment of the San Andreas fault, California.
Source: U.S. Geological Survey Professional Paper 1515 edited by Robert E. Wallace




Introduction

Earthquake Tectonic
Creep deformation

Fault movements

Disrupt and displace Geologic
and Geomorphic units

 Knowing how much slip a fault has accumulated during one earthquake or over the long term is important in a better
understanding of fault kinematics and mechanics ( 4rmijo et al, 1989; Gaudemer et al, 1989, 1995; etc), the relation between earthquakes and

cumulative slips ( Tapponnier et al, 2001; Zielke, Klinger, & Arrowsmith, 2015; etc), and also the earthquake magnitude and stress distribution (Kiinger et
al, 2011; Lasserre et al., 1999; Zielke et al.,, 2012; etc)

* How to quantify fault activity?
Geomorphic markers

Modified from Sieh and Jahns (1984)



Motivation

v' A fault-offset marker is identified visually by the expert in satellite, aerial images, or on the field (manual measurements)
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The San Andreas Fault (SAF) rupture trace for the M7.8
Fort Tejon earthquake in 1857

Digital elevation model for Wallace Creek (WC)

x Offset measures and their uncertainties might be disputed
x With the large rupture length fault, the measurement is time-consuming

> Developing automated methods for remotely measuring fault slip in topography data



Methods

LaDiCaoz (Lateral Displacement Calculator)

(Zielke & Arrowsmith, 2012; updated version, LaDiCaoz_v2, released by Haddon et al., 2016)

3D _Fault Offsets

(Stewartetal., 2018)

Target Linear geomorphic features (e.g., fluvial channels, terrace risers)
Correlation Two along-fault profiles crossing an offset marker on either Nine identified geometric characteristics across
side of the fault trace (2D) each offset marker section on either side of a fault
(3D)
Offset Horizontal offset Horizontal offset and vertical offset
Calculation Vertical offset (updated version, LaDiCaoz_v2)
Uncertainties | Estimating from the range of back slip reconstructions Computed from the various sources of error (DEM

resolution, each point position within a regression, piercing points
position onto the fault plane, fault positions, strike and dip)

Modified from Sieh and Jahns (1984)




LaDi1Caoz (Lateral Displacement Calculator)

(Zielke & Arrowsmith, 2012; updated version, LaDiCaoz_v2, released by Haddon et al., 2016)
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LaDi1Caoz (Lateral Displacement Calculator)

(Zielke & Arrowsmith, 2012; updated version, LaDiCaoz_v2, released by Haddon et al,, 2016) v’ vertical shift v’ vertical stretch v/ horizontal shift
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LaDi1Caoz (Lateral Displacement Calculator)

(Zielke & Arrowsmith, 2012; updated version, LaDiCaoz_v2, released by Haddon et al., 2016)

Automated offset calculation
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LaDi1Caoz (Lateral Displacement Calculator)

(Zielke & Arrowsmith, 2012; updated version, LaDiCaoz_v2, released by Haddon et al., 2016)
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3D Fault Offsets

(Stewart et al, 2018) 350
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3D _Fault Offsets

(Stewart et al., 2018)
Specific geometric points characterizing the marker morphology

Riverbed: The zone of lowest elevation (Min Z)

Ridge: Points of maximum elevation (Max Z)

Riser Top: A zone of slope break with a maximum downward concavity
(Min Laplacian of the topography)

Free Face: Steepest slope

(Maximum gradient of the topography)

Riser Base: A zone of slope break and maximum upward concavity
(Max Laplacian of the topography)

v Using the least-square method, this function computes a 3D best-fitting straight line

through each of the 9-point clouds on either side of the fault

v’ 2 groups of 9 pairs of 18 linear geomorphic markers in total
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3D _Fault Offsets

(Stewart et al., 2018)

Calculating the lateral and vertical offsets, along with the total uncertainties on these offsets

River
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Calculating the lateral and vertical offsets

Horizontal offset = xy — x5 (m)

Vertical offset = zy — zg (n)

The total uncertainties on these offsets (Using the Monte Carlo approach)

Various sources of error (DEM resolution, each point position within a regression, piercing

points position onto the fault plane, fault positions, strike and dip)
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3D _Fault Offsets

(Stewart et al., 2018)

Functions 7a and 7b: Reconstruction of the DEM map view representation horizontally and vertically
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Discussion

% LaDiCaoz includes a number of user interactions and primarily analyzes horizontal offset markers in 2-D.

& Meanwhile, 3D-Fault_Offsets requires only a small amount of user interaction, therefore, it limits most of the possible bias that are commonly
associated with fault offset measurements.

& Especially with the moderate-low to low channel rating (channel at oblique angle to fault trace, degraded, curvature when crossing the fault,...) (e.g, Sieh,
1978; Lienkaemper, 2001), the 3D-Fault-Offsets method presents the result with better-assigned uncertainty.

& Measurement of vertical displacement has been included in 3D-Fault_Offsets. Although the uncertainty remains equivalent to or greater than the offset, it

still allows us to study the preservation of vertical offsets across the complete set of markers.
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Conclusions

& Both methods suggested a better idea of measuring fault offset with more precision.

& LaDiCaoz semi-automized method has proven to be relevant and efficient in many studies that have used it (Haddon et al, 2016; Ren et al,
2016; Salisbury et al,, 2012; Zielke et al,, 2010, 2012). It allows measuring hundreds of offsets along a fault, about 10 times more than ever before.

& 3D-Fault_Offsets succeeds in mathematically identifying and representing nine of the most prominent geometric characteristics.

& The authors of those two approaches all emphasize that in order to make meaningful measurements, it is important to have a basic

understanding of tectonic geomorphology.



THANK YOU FOR LISTENING
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