Coupled THMC Modeling of CO₂ Injection by Finite Element Methods

Yin, S., Dusseault, M. B., & Rothenburg, L. (2011). Journal of Petroleum Science and Engineering, 80(1), 53-60.

> Presenter: Tzu-Kuan Chang Advisor: Jui-Sheng Chen Date: 2023.12.15

Outline

- Introduction
- Methodology
- Results
- Conclusions

Introduction

- Massive CO₂ sequestration is proposed to mitigate greenhouse gas emissions.
- It has been suggested that 7 Gt of CO₂ might be sequestered every year to maintain the balance of CO₂ emission.

Introduction	Methodology	Results	Conclusions

- When adjusting CO₂ sequestration, reservoirs induce a range of strongly coupled thermal, hydraulic, mechanical and chemical processes (THMC).
- THMC includes:
 - Heat transfer
 - Multiphase fluid flow
 - Geomechanical response (strains and stresses)
 - Solute transport
 - Geochemical reactions between the fluids and formation minerals
- Injecting such large amounts of CO_2 requires appropriate strata injection capabilities, well and caprock integrity.
- Very few fully-coupled THMC models have addressed the large-scale problem.

Objective

- Analyze stress and pressure changes in rocks around a borehole during CO_2 injection.
- Understand heat transfer, fluid flow, geomechanics behavior, and reactive chemical transport by mathematical methods.

Methodology

- Fully coupled THMC model
 - Based on FEM.
 - Combine theories of poroelasticity, thermoelasticity, and reactive solute transport.

Equation of mechanics

General equilibrium equation in terms of effective stress

$$G\nabla^2 u + (G + \lambda)\nabla divu - \left(1 - \frac{K}{K_m}\right)\nabla p - K\beta_s\nabla T = 0$$

(Lewis and Schrefler, 1998; Yin et al., 2010)

G, λ : Lamé elastic constants

u: displacement

p: pore pressure

T: temperature

 β_s : volumetric thermal expansion coefficient

- *K*: bulk moduli (bulk skeleton)
- K_m : bulk moduli (matrix mineral)

Equation of hydraulics

General form of the continuity equation for fluid flow, incorporating Darcy's Law

$$\nabla^T \left(-\frac{k}{\mu} \nabla p \right) + \left(\frac{\alpha - \Phi}{K_m} + \frac{\Phi}{K_w} \right) \frac{\partial p}{\partial t} + \alpha \frac{\partial \varepsilon}{\partial t} - \left[(\alpha - \Phi) \beta_s + \Phi \beta_w \right] \frac{\partial T}{\partial t} = 0 \quad \text{(Lewis and Schrefler, 1998; Yin et al., 2010)}$$

 α : Biot's coefficient, equal to 1.0-K/K_m

k: permeability of the porous medium

 Φ : porosity

 μ : viscosity

 β_w : volumetric thermal expansion coefficient of the fluid

Thermal equation

General form of the energy balance equation, including the thermal convection and thermal conduction terms

$$\nabla^{T}[-\lambda_{T}\nabla T] + \rho_{w}c_{w}v\nabla T + T\left[(1-\Phi)c_{s}\frac{\rho_{s}}{K_{m}} + \Phi c_{w}\frac{\rho_{w}}{K_{w}}\right]\frac{\partial p}{\partial t} + \left[-\Phi c_{w}\rho_{w}\beta_{w}T - (1-\Phi)\rho_{s}c_{s}\beta_{s}T + (1-\Phi)\rho_{s}c_{s} + \Phi\rho_{w}c_{w}\right]\frac{\partial T}{\partial t} + Q_{h} = 0$$

(Lewis and Schrefler, 1998; Yin et al., 2010)

 λ_T : porous medium thermal conductivity *c*: specific heat capacity ρ : density Q_h : external sink or source *v*: Darcy velocity

Equation of chemical reactions

General form of the equation for solute transport of ith aqueous species, including both the solute diffusion and convection terms

$$\nabla^{T}(D_{i}\nabla C_{i}) + \Phi \frac{\partial C_{i}}{\partial t} + v_{w}\nabla C_{i} = R_{i}, i = 1, \dots, N$$

- C_i : aqueous phase concentration of the ith species (moles of species/unit volume of solution)
- D_i : dispersion coefficient
- R_i : reaction rate
- v_w : Darcy velocity

General form of the continuity equation for the jth species in the solid phase

$$\frac{\partial C_j}{\partial t} R_j, j = 1, \dots, M$$

 C_j : solid phase concentration of the jth mineral species (moles of species per bulk volume of rock) R_j : reaction rate

Rate law for the mineral dissolution and precipitation reaction

$$R_j = A_j k_j (1 - \frac{Q_j}{K_{eq,j}})$$

- A_i : reactive surface area for mineral
- k_i : rate constant of mineral j
- $K_{eq,j}$: chemical equilibrium constant for mineral reaction j
- Q_j : chemical affinity of mineral reaction j
- R_j : positive \rightarrow precipitation, negative \rightarrow dissolution 11

Introduction	Methodology	Results	Conclusions

- Two-step method
 - Approach to solve the reactive transport equations.
 - Solve solute transport & chemical reactions separately.

Introduction	Methodology	Results	Conclusions

- Subgrid scale (SGS) / Gradient subgrid scale (GSGS) method
 - Subgrid scale: A computational method used for stabilizing numerical solutions of advection-diffusion-reaction problems.
 - Gradient subgrid scale: A technique that enriches the SGS method with an integral containing the gradients of the residual and the weighting space.
 - Mitigate numerical instabilities and spurious oscillations that may arise from unresolved small-scale features in the flow and transport processes.
 - Improve the accuracy and stability of the numerical simulations.

Validation - reactive transport module

The chosen validation problem: Transport of three species with sorption and decay in a one-dimensional flow field.

$$R\frac{\partial C_1}{\partial t} = D\frac{\partial^2 C_1}{\partial z^2} - v\frac{\partial C_1}{\partial z} - k_1 C_1$$

$$\frac{\partial C_2}{\partial t} = D \frac{\partial^2 C_2}{\partial z^2} - v \frac{\partial C_2}{\partial z} - k_2 C_2 + k_1 C_1$$

$$\frac{\partial C_3}{\partial t} = D \frac{\partial^2 C_3}{\partial z^2} - v \frac{\partial C_3}{\partial z} - k_3 C_3 + k_2 C_2$$

Domain: one dimension (40cm) Boundary condition: Inlet: $C_{10} = 1.0, C_{20} = 0.0, C_{50} = 0.0$ Exit: no-flux

Symbol	Meaning	Value
<i>C</i> ₁		-
<i>C</i> ₂	concentrations of species	-
<i>C</i> ₃		-
D	dispersion coefficient	$0.018 cm^2/h$
v	fluid velocity	0.1 <i>cm/h</i>
k_1		$0.05h^{-1}$
k_2	species reacion rate	$0.03h^{-1}$
<i>k</i> ₃		$0.02h^{-1}$
R	retardation coefficient	2.0

• Solid line: Analytical results

Pure Hypothetic Simulation

Suppose injection of CO₂ saturated water into a carbonate aquifer.

Information of aquifer and well			
formation	pure calcite (CaCO ₃)		
porosity	0.25		
depth	1500m		
horizontal far-field stress	$\sigma_{hx} = \sigma_{hy} = 3.2*10^4 kPa$		
vertical stress	$\sigma_v = 2.2*10^4 kPa$		
initial pore pressure	$p_0 = 1.4*10^4 kPa$		
radius of open hole well	$r_{w} = 0.127m$		
injection pressure	$p_i = 2.0*10^4 kPa$		
Initial temperature of aquifer	70°c		
temperature of water	$t = 10^{\circ}c$		

Fig. 5. Geometry of the wellbore and far-field stresses.

*Model is restricted to single phase flow and elastic porous media due to the complexity of the problem.

Chemical reactions

Chemical reactions happen during injection: $CO_2 + H_2O \Rightarrow HCO_3^ H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$

Reaction between the acidic solution and the rock mineral during injection: $CaCO_3 + H^+ \Leftrightarrow Ca^{2+} + HCO_3^-$

Symbol	Meaning	Value
Initial concentration of H ⁺	-	$1.0*10^{-4}$ mol/m ³
Initial concentration of Ca ²⁺	-	$4.0 mol/m^3$
Initial concentration of HCO ₃	-	$4.0 mol/m^3$
Chemical equilibrium constant of reaction	-	1.6*10 ⁵
Initial temperature of aquifer	-	70°c
E	-	$1.5 * 10^{6} kPa$
v	Darcy velocity	0.30
K_m	bulk moduli (matrix mineral)	$1.4 * 10^{6} kPa$
K_w	bulk moduli (water)	$1.0 * 10^{6} kPa$
k	permeability of the porous medium	$0.987 * 10^{-16} m^2$
μ	viscosity	1 cP
$ ho_{s}$	density (solid)	$2.5 * 10^3 kg/m^3$
$ ho_w$	density (liquid)	$1.0 * 10^3 kg/m^3$
β_s	volumetric thermal expansion coefficient of the skeleton	$2.0 * 10^{-5} K^{-1}$
β_w	volumetric thermal expansion coefficient of the fluid	$2.0 * 10^{-4} K^{-1}$
c_s	specific heat capacity of solid	0.4kJ/kg - K
C_W	specific heat capacity of water	4.2kJ/kg - K
λ_T	porous medium thermal conductivity	$\frac{2.65J}{m-s-K}$
D	dispersion coefficient	$1.5 * 10^{-7} m^2/s$

Methodology

Results

Fully coupled THMC solution - stress

Fig. 6. Effective tangential stress profiles at different times.

Effective tangential stress around the wellbore declines over the time under the combined impact of cooling and chemical reaction effects.

Induced hydraulic fracture more likely to take place.

Introduction	Methodology	Results	Conclusions
	1		

Fully coupled THMC solution

Fig. 7. Pore pressure profiles at different times.

- Both pore pressure and temperature increase with time.
- The concentration of CaCO₃ around the wellbore is declining with time

Fig. 8. Temperature profiles at different times.

Fully coupled THMC solution - relationship of porosity and permeability

Fig. 10. Porosity profiles at different times.

Fig. 11. Permeability profiles at different times.

A relatively small increase in porosity can lead to substantial increase of permeability of the formation rock.

Introduction	Methodology	Results	Conclusions

Impact of Chemical Effect

Fig. 12. Effective tangential stress profiles with and without chemical effect at Fig. 13. Pore pressure profiles with and without chemical effect at 150 days. Fig. 14. Temperature profiles with and without chemical effect at 150 days.

Mineral dissolution near the wellbore contributes to the reduction of effective shear stress.

Introduction Methodology R	Results	Conclusions
----------------------------	---------	-------------

Impact of Thermal Effect

Fig. 15. Effective tangential stress profiles with and without thermal effect at 150 days.

Cooling effects (shrinkage) render the stress state around the wellbore more favorable for hydraulic fracturing, which will enhance well injectivity.

Impact of the Stabilized FEM Scheme

Fig. 16. Temperature change profiles generated by Galerkin FEM and stabilized FEM.

Fig. 17. H⁺ concentration profiles generated by Galerkin FEM and stabilized FEM.

The stabilized finite element model reduces the numerical oscillations in transient advection-diffusion problems.

Conclusions

• Thermal and chemical effects have a significant impact on stress and pressure change around the injection area.

Thank you for your attention.