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Background

• There are many contaminated sites worldwide, and the pollutants present at these sites pose threats to human 
health. (e.g. tetrachloroethene (PCE) is a carcinogenic compound causes Liver, Bladder and Kidneys cancer)

• American Society for Testing and Materials (ASTM) released standards for risk-based corrective action 
(RBCA), which their goal is to maximize the protection of human health and the environment while 
minimizing restoration costs within acceptable levels of risk.

• Risk

A measure of the probability and severity of a potential outcome. 
Sometimes expressed as a single, most likely expected value, 
or a probability distribution generated by probabilistic methods 
from which expected values can be derived.
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Risk estimation

• Formulas to estimate cancer risk associated with the ingestion of water containing a carcinogenic compound 
(USEPA 1989):

𝑅𝑖𝑠𝑘 = 𝐶𝑤 ×
𝐼𝑅×𝐸𝐹×𝐸𝐷

𝐵𝑊×𝐴𝑇×365 𝑑𝑎𝑦/𝑦𝑒𝑎𝑟
× 𝐶𝑃𝐹

• By sensitivity analysis, the contaminant concentration 𝐶𝑤
exerts the largest influence on the resulting risk distribution function.

• Expand analysis of carcinogenic risk to include:

• A simple groundwater flow and contaminant transport model

• Three exposure pathways (ingestion, inhalation, and dermal contact)

• A cumulative distribution to represent the cancer potency factor
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Where:

𝐶𝑤: the estimated long-term contaminant concentration (mg/L) 

𝐼𝑅: water ingestion rate (L/day)

𝐸𝐹: exposure frequency (days/year)

𝐸𝐷: exposure duration (years)

𝐵𝑊: body weight (kg)

𝐴𝑇: average lifetime (years)

𝐶𝑃𝐹: cancer potency factor 𝑚𝑔/𝑘𝑔 𝑑𝑎𝑦 −1

pathway exposure factor
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Monte Carlo Method
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Probability distributions Monte Carlo simulation Probabilistic risk estimates
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Partitioned multiobjective risk method (PMRM)

• Rely solely upon “traditional” expected value assessments may fail to fully consider worst-case scenarios.

• PMRM (Asbeck and Haimes 1984) generates multiple expected-value functions 𝑓(∙) conditional to 
thresholds 𝛽2 associated with specified levels of damage or risk 𝑥.

• Can be expressed as:

𝑓 ∙ = 𝐸𝑉 𝑥 𝑥 > 𝛽2 =
𝛽2׬
∞
𝑥𝑝 𝑥 𝑑𝑥

𝛽2׬
∞
𝑝 𝑥 𝑑𝑥
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Where: 

𝑥: the damage (e.g., incremental cancer rate)

𝑝(𝑥): the continuous probability density function for damage 𝑥
𝛽2: the lowermost risk value threshold defining the extreme event case
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Objective

• Find out which parameter influence risk estimation the most.

• Using PMRM, decide the acceptable remedial options under a severe outcome.
(compare to the traditional expected value risk assessment)
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Hypothetical example 

• PCE source zone are defined as 30 𝑚 × 30 𝑚 × 6𝑚, represent the scale of a dry cleaning business located 
over a shallow unconfined aquifer. 

• Slow dissolution constitute continuous point source.

• Municipal water supply well for a community of 100,000 residents is located 1,200 m down gradient from the 
source zone.
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Methodology

Inclusion of a continuous source and 

a corresponding sink (first order irreversible decay) 

generate a steady state concentration distribution.



Contaminant concentration

• Analytical solution from the governing equation for solute mass transport through a rigid porous medium
including advection, dispersion, and reaction (Zheng and Bennett 1995), applied for large travel distance or
long transport time:

𝐶(𝑥)

𝐶0
= exp{

𝑥

2𝐷𝐿
∗ (𝑣𝑥

∗ − 𝑣𝑥
∗2 + 4𝐷𝐿

∗𝜆∗)}
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Where:

𝐶0, the constant concentration at the upstream (𝑥 = 0) boundary

𝑥, distance from the upstream boundary

𝐷𝐿
∗ = 𝐷𝐿/𝑅𝑓, (retarded longitudinal dispersion coefficient), 𝐷𝐿 = 𝛼𝐿(longitudinal dispersivity) ∙ 𝑣𝑥

𝑣𝑥
∗ = 𝑣𝑥/𝑅𝑓, (retarded advective velocity)

𝜆∗ = 𝜆/𝑅𝑓, (retarded first order decay coefficient)
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Factors for PCE

• Pathway exposure factor (PEF) :

𝑅𝑖𝑠𝑘 = 𝐶𝑤 ∙ 𝑃𝐸𝐹𝑖𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 + 𝑃𝐸𝐹𝑑𝑒𝑟𝑚𝑎𝑙 + 𝑃𝐸𝐹𝑖𝑛ℎ𝑎𝑙𝑎𝑡𝑖𝑜𝑛 ∙ 𝐶𝑃𝐹

• Cancer potency factor (CPF) :

Use the composite cumulative distribution frequency curve of the human PCE cancer potency factor 

(McKone and Bogen, 1992) as an empirical function.
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(McKone and Bogen, 1992)



Water-based exposure pathways

• Ingestion

𝑃𝐸𝐹 =
𝐼𝑅×𝐸𝐹×𝐸𝐷

𝐵𝑊×𝐴𝑇
∙ 𝑓𝑚𝑜

∗ =
𝐼𝑤

𝐵𝑊
∙ 𝑓𝑚𝑜

∗

• Dermal

𝑃𝐸𝐹 =
𝑆𝐴

𝐵𝑊
∙ 𝑓𝑠𝑎 ∙ 𝑃𝐶 ∙ 𝐸𝑇𝑠 ∙ 𝑓𝑚𝑟

∗

• Inhalation

𝑃𝐸𝐹 =
𝐵𝑅

𝐵𝑊
∙

𝐶𝑠

𝐶𝑤
∙ 𝐸𝑇𝑠 +

𝐶𝑏

𝐶𝑤
∙ 𝐸𝑇𝑏 +

𝐶ℎ

𝐶𝑤
∙ 𝐸𝑇ℎ ∙ 𝑓𝑚𝑟

∗

McKone and Bogen (1991) 
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Where:

𝐼𝑤, water ingestion rate (L/day)

𝐵𝑊, body weight (kg)

𝑓𝑚𝑜
∗ , fraction of ingested PCE metabolized

𝑆𝐴, skin surface area (𝑚2); 𝑓𝑠𝑎 , fraction of skin exposed in shower or 

bath

𝑃𝐶, skin permeability (m/h); 𝐸𝑇𝑠, shower exposure time (h/day)

𝑓𝑚𝑟
∗ , fraction of inhaled or dermally absorbed PCE metabolized at low doses

𝐵𝑅, breathing rate (𝑚3/day)
𝐶𝑠

𝐶𝑤
= 𝜙𝑥

𝑊𝑠

𝑉𝑅𝑠
, ratio of concentration in shower air to water

𝐸𝑇𝑠, shower exposure time (h/day)
𝐶𝑏

𝐶𝑤
= 𝜙𝑥

𝑊𝑠

𝑉𝑅𝑏
, ratio of concentration in bathroom air to water

𝐸𝑇𝑏, bathroom exposure time (h/day)
𝐶ℎ

𝐶𝑤
= 𝜙𝑥

𝑊𝑠

𝑉𝑅ℎ
, ratio of concentration in household air to water

𝐸𝑇ℎ, exposure time in house (h/day)

𝜙𝑥, mass transfer estimate; 𝑊, ratio of the water use rate;    𝑉𝑅, ventilation rate
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Preliminary result
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Discussion and results

The predicted cancer risk is most sensitive to the first order decay constant 𝜆, 

the groundwater pore velocity 𝑣𝑥, and the cancer potency factor 𝐶𝑃𝐹.



Preliminary result

• The expected risk value for the reference case is 5.55 × 10−5

or approximately 5.6 cancers in a population of 100,000.

• The chance of exceeding 1 in 100,000 (1.E-5) additional cancers is 8.0%.
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PMRM application

• The conditional expected values for the extreme outcomes 
is referred to as 𝑓4(∙).

• Traditional expected value for the entire range of possible outcomes 
is referred to as 𝑓5 ∙ .

• 𝑓1 ∙ is reserved for the costs associated with 
alternative risk management decision states (𝑠1, … , 𝑠𝑛). 
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Expected values of risk for alternative management decisions
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Cost-benefit relationships

• a: traditional expected values.

• b: expected values conditioned to outcomes with greater than 1:100,000 cancer risk.

Dashed lines represent estimated optimal decision horizon.
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Conclusions

• When coupled with the PMRM, models integrating uncertainty in contaminant transport, exposure, and 
potency constitute a practical method for investigating the cost-benefit relationship of alternative remedial 
actions intended to mitigate risks associated with contaminated groundwater.

• The results demonstrate that the predicted cancer risk can be more sensitive to hydrogeological parameters than 
to the cancer potency factor.

• provide a rationale to guide additional site investigations intended to reduce uncertainty in the most important system 
variables.

• remedial actions that amend characteristics of the groundwater system controlling contaminant concentration are 
likely to be more beneficial within a risk-based corrective action framework than actions affecting the individual 
exposure pathways.
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Thank you for your attention!
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Probability distributions assigned to account for uncertainty 

and inter-individual variability (Bogen and Spear 1987) 

of each of the terms, can be sampled randomly using 

Monte Carlo simulation, then be combined to generate 

probabilistic risk estimates. (P.8)
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The distributions shown in Table 1 were assigned as input variables in the Monte Carlo 

simulation program Simulacio´n 4.0 (Varela 2003) to generate a probability distribution 

function for the cancer risk associated with ingesting water containing tetrachloroethene

(PCE). 
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average linear pore velocity, vx, was estimated using an effective 

hydraulic conductivity, K, of 50 m/day; an estimated porosity, n, 

of 0.20; and a regional hydraulic gradient, d//dx, of –0.001 m/m. 

Variation about a mean pore velocity of 0.25 m/day, calculated 

using Darcy’s law [vx = q/n = –K(d//dx)/n], was incorporated 

into the analysis. (P.17)

The rate of PCE degradation attributable to biotic or abiotic 

transformation varies as a function of temperature, substrate 

concentration, nutrient supply, and microbial population 

variability in time and space.
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For DNAPL source zone treatments, estimates were based on 

median treatment costs for enhanced bioremediation, in situ 

chemical oxidation, and surfactant/cosolvent flushing reported 

by McDade et al. (2005). Costs were scaled to the DNAPL 

source zone for this study on the basis of treatment volume. 

Similarly, scaled estimates for pump-and-treat with granular 

activated carbon were based on cost estimates given by 

Ramsburg and Pennell (2001). Costs for educational campaigns, 

a bottled water subsidy, and water supply well relocation are 

gross estimates. No attempt was made to correct cost estimates 

to present value.(P.22)



Contaminant transport model

• Simplified from the governing equation for solute mass transport through a rigid porous medium including 
advection, dispersion, and reaction (Zheng and Bennett 1995):

𝑅𝑓
𝜕𝐶

𝜕𝑡
= −

𝜕

𝜕𝑥
𝑣𝑥𝐶 +

𝜕

𝜕𝑥
𝐷𝐿

𝜕𝐶

𝜕𝑥
− 𝜆𝐶

• Steady state analytical solution applied for large travel distance or long transport time:

𝐶(𝑥)

𝐶0
= exp{

𝑥

2𝐷𝐿
∗ (𝑣𝑥

∗ − 𝑣𝑥
∗2 + 4𝐷𝐿

∗𝜆∗)}
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The initial and boundary conditions:

𝐶 = 0 𝑎𝑡 𝑡 = 0, 0 ≤ 𝑥 ≤ ∞
𝐶 = 𝐶0 𝑎𝑡 𝑥 = 0, 𝑡 > 0
𝛿𝐶

𝛿𝑥
= 0 𝑎𝑠 𝑥 → ∞, 𝑡 > 0

Where:

𝐶0, the constant concentration at the upstream (𝑥 = 0) boundary

𝑥, distance from the upstream boundary

𝐷𝐿
∗ = 𝐷𝐿/𝑅𝑓, (retarded longitudinal dispersion coefficient), 𝐷𝐿 = 𝛼𝐿(longitudinal dispersivity) ∙ 𝑣𝑥

𝑣𝑥
∗ = 𝑣𝑥/𝑅𝑓, (retarded advective velocity)

𝜆∗ = 𝜆/𝑅𝑓, (retarded first order decay coefficient)
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Risk cumulative distribution function

• From left to right at 50% probability, the curves represent: 𝑠5, 𝑠9, 𝑠6, 𝑠8, 𝑠7, 𝑠2, 𝑠4, 𝑠3, 𝑠1

• From left to right at 98% probability, the curves represent: 𝑠9, 𝑠5, 𝑠8, 𝑠7, 𝑠6, 𝑠4, 𝑠2, 𝑠3, 𝑠1
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