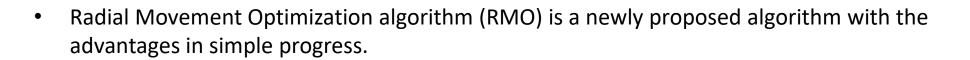

Slope stability analysis based on improved radial movement optimization considering seepage effect

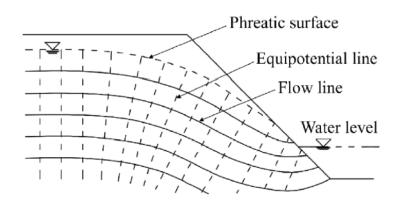
Jin, L., Wei, J., Luo, C., & Qin, T. (2023). Slope stability analysis based on improved radial movement optimization considering seepage effect. Alexandria Engineering Journal, 79, 591-607.

Presenter: Jia-Yi Wu Advisor: Prof. Jia-Jyun Dong Date: 2023/12/01

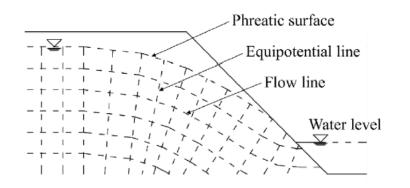

Outlines

- 1. Introduction
- 2. Slope stability analysis considering seepage
- 3. Improved Radial Movement Optimization (IRMO)
- 4. Results discussion and comparison
- 5. Conclusion

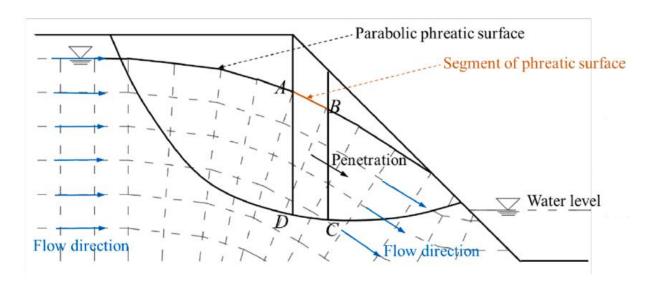
- Slope stability analysis constitutes an important geotechnical problem.
- The limit equilibrium methods (LEMs) have been widely used and developed for estimate the minimum Factor of safety (Fs) associated with critical failure surface (CFS) in engineering practice.
- The traditional search optimization methods, like grid search method, variation method, simplex method, conjugategradient method, random search method and Monte Carlo method.
- Many optimization algorithms have been adopted and developed to solve this problem, but none of them can combine all the advantages of these algorithms.


Optimization method	Advantages	Disadvantages
Genetic Algorithm (GA)	Search flexibility, high applicability	Low efficiency, easy premature, difficulty to selectparameters
Simulated Annealing Algorithm (SA)	High precision, application simple	Low efficiency, sensitivity for initialization
Particle Swarm Optimization (PSO)	Application simple, high efficiency	Poor precision, poor stability
Ant Colony Optimization (ACO)	Application simple, high precision	Low efficiency
Artificial Fish Swarms Algorithm (AFS)	High efficiency	Poor precision
Gravitational Search Algorithm (GS)	Application simple	Unknown
Evolutional Programming (EP)	Application simple	Low efficiency, sensitivity for initialization
Black Hole Algorithm (BHA)	High efficiency, Application simple	Premature convergence
Harmony Search Algorithm (HM)	High efficiency for small-scale problem	low efficiency for complicated problem
Biogeography- based Optimization (BBO)	High precision, high stability	Unknown
Cuckoo search	High efficiency	Hard to convergence

- Improved Radial Movement Optimization algorithm (IRMO) has showed great effectiveness and accuracy.
- The instability of most natural slopes is closely related to the influence of groundwater.
- The simplification or simulation of seepage field is generally the essential step before computation due to the complexity of seepage mechanism and difficult actual-seepage field drawing.



Slope stability analysis considering seepage


- Streamlines and equipotential lines intersect perpendicularly to each other to form a flow net in slope.
- The lines are commonly simplified in a reasonable form for infiltration force analysis.


(a) Actual seepage field

(b) Simplified seepage field

• Simplied phreatic surfaces could be fitted by multi-segments associated with divided strips to simulate actual phreatic surfaces.

Static equilibrium
 In horizontal direction

 $U_i \sin \alpha_i - J'_{i\alpha} + P_{i-1} - P_i = 0$

In vertical direction $W_{wi} - U_i \cos \alpha_i - J_{iy} = 0$ Coefficient calculation equation. $\begin{cases}
U_i = \gamma_w l_i h_{wi} \cos^2 \beta_i \\
P_i = \frac{1}{2} \gamma_w H_{BC}^2 \cos^2 \beta_i \\
P_{i-1} = \frac{1}{2} \gamma_w H_{AD}^2 \cos^2 \beta_i
\end{cases}$ P_i, P_{i-1} : the pore water pressure at the side of strip H_{AD}, H_{BC} : the heights of the phreatic surface at the side of strip U_i : the pore water pressure at strip base h_{wi} : the average height of phreatic surface β_i : the phreatic surface inclination α_i : the base inclination

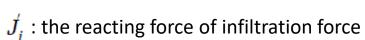
 l_i : the base length of strip

 J_i : the reacting force of infiltration force W_{wi} : the water weight

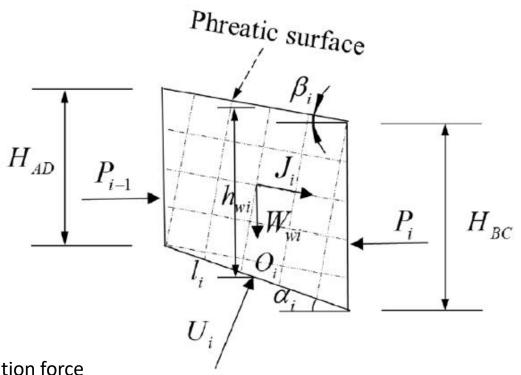
First the slide body is divided into strips.

Analyzing the reaction force of the infiltration force.

$$J'_{ix} = \gamma_w h_{wi} \cos^2 \beta_i (H_{AD} - H_{BC} + l_i \sin \alpha_i)$$


$$J'_{iy} = \gamma_w h_{wi} \sin^2 \beta_i l_i \cos \alpha_i \qquad J'_{ix} : \text{The J}'_i \text{ in x direction}$$

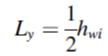
$$\frac{J'_{iy}}{J'_{ix}} = \tan \beta_i$$

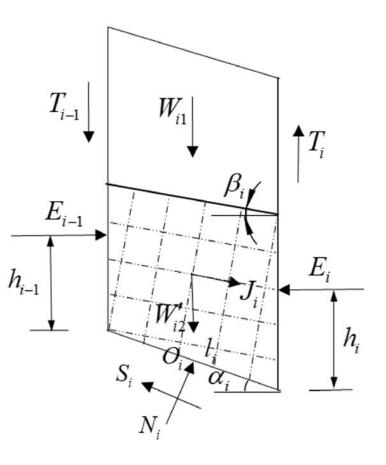

$$J'_{ix} = \tan \beta_i$$

$$J_{i}^{'} = \frac{J_{iy}}{\sin\beta_{i}} = \gamma_{w} h_{wi} l_{i} \sin\beta_{i} \cos\alpha_{i}$$

$$J_{i} = -J_{i}^{\prime} = -\gamma_{w}h_{wi}l_{i}\sin\beta_{i}\cos\alpha_{i}$$

- β_i : the phreatic surface inclination
- $lpha_i$: the base inclination

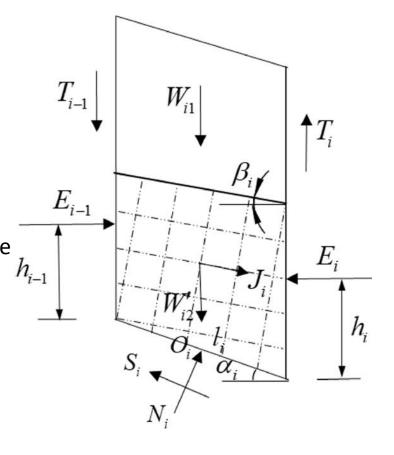



Calculate the moment at the bottom centre of strip O_i, and obtain the following from moment balance

$$P_{i-1}\left(\frac{1}{3}H_{i-1} + \frac{1}{2}l_i\sin\alpha_i\right) - P_i\left(\frac{1}{3}H_i - \frac{1}{2}l_i\sin\alpha_i\right) - J_i\cos\beta_i L_y = 0$$

$$L_{y} = \frac{P_{i-1}\left(\frac{1}{3}H_{i-1} + \frac{1}{2}l_{i}\sin\alpha_{i}\right) - P_{i}\left(\frac{1}{3}H_{i} - \frac{1}{2}l_{i}\sin\alpha_{i}\right)}{J_{i}\cos\beta_{i}} \quad L_{y}: \text{the location of infiltration force}$$

As the width of strip is small enough, it could be considered that $H_i = H_{i-1} = h_{wi}$



$$\Delta E_{i} = (W_{i1} + W_{i2}^{'} - \Delta T_{i})\tan\alpha_{i} + J_{i}\sin\beta_{i}\tan\alpha_{i} + J_{i}\cos\beta_{i}$$
$$-\frac{\sec^{2}\alpha_{i}}{F_{s} + \tan\varphi_{i}\tan\alpha_{i}} [(W_{i1} + W_{i2}^{'} - \Delta T_{i})\tan\varphi_{i} + J_{i}\sin\beta_{i}\tan\varphi_{i} + c_{i}l_{i}\cos\alpha_{i}]$$

$$T_{i} = \frac{J_{i}h_{wi}\cos\beta_{i}}{2l_{i}\cos\alpha_{i}} - \frac{\left[E_{i}(h_{i} - h_{i-1} - l_{i}\sin\alpha_{i}) + \Delta E_{i}\left(h_{i-1} + \frac{1}{2}l_{i}\cos\alpha_{i}\tan\alpha_{i}\right)\right]}{l_{i}\cos\alpha_{i}}$$

 $\Delta T_i = T_i - T_{i-1}$

E_i, *E_{i-1}*: The normal forces at the side of strip *T_i*, *T_{i-1}*: The shear forces at the side of strip *W_{i-1}*: The portion weight of strip above phreatic surface *W'_{i-2}*: The float weight of strip below phreatic surface *N_i*: The contact pressure at strip base *S_i*: The shear force at strip base *G_i*: The internal friction angle *C_i*: The cohesion β_i : the phreatic surface inclination α_i : the base inclination

There is no external force acting on the assumed slide body, all of the increments of normal forces could be offset to zero.

$$\sum \Delta E_i = \sum \left(A_i - \frac{B_i}{F_s + \tan \varphi_i \tan \alpha_i} \right) = 0$$

$$A_{i} = (W_{i1} + W_{i2}' - \Delta T_{i}) \tan \alpha_{i} + J_{i} \sin \beta_{i} \tan \alpha_{i} + J_{i} \cos \beta_{i}$$

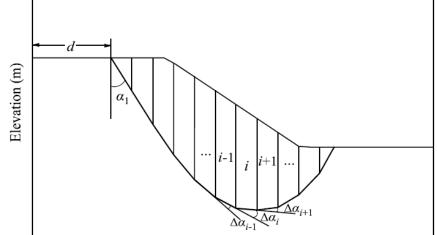
$$B_{i} = \sec^{2}\alpha_{i} \cdot \left[c_{i}l_{i}\cos\alpha_{i} + \left(W_{i1} + W_{i2}^{\prime} - \Delta T_{i}\right)\tan\varphi_{i} + J_{i}\tan\varphi_{i}\sin\beta_{i}\right]$$

Fs = Factor of safety

 W_{i1} : The portion weight of strip above phreatic surface W'_{i2} : The float weight of strip below phreatic surface N_i : The contact pressure at strip base S_i : The shear force at strip base φ_i : The internal friction angle c_i : The cohesion β_i : the phreatic surface inclination α_i : the base inclination

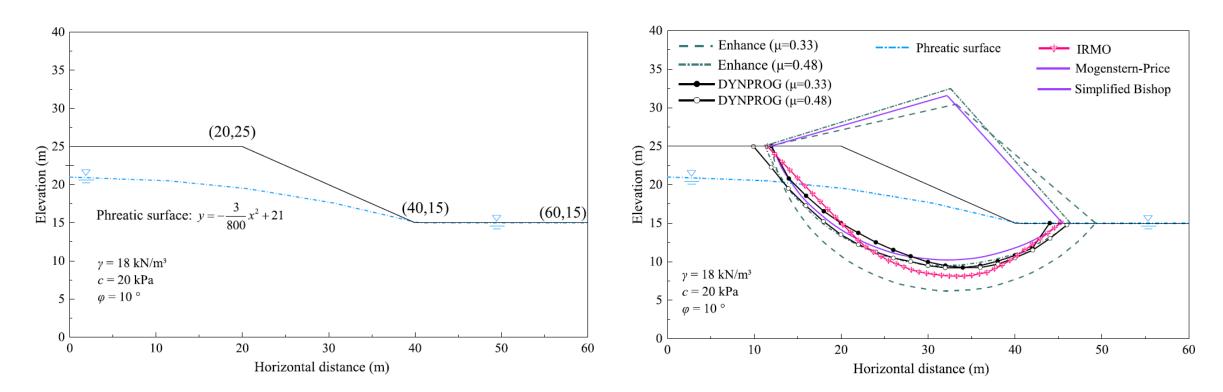
Improved Radial Movement Optimization (IRMO)

$$X_{M,N} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,N-1} & x_{1,N} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,N-1} & x_{2,N} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{M,1} & x_{M,2} & \cdots & x_{M,N-1} & x_{M,N} \end{bmatrix} \qquad x_{i,j} = \min x_j + rand(0,1) \times (\max x_j - \min x_j)$$


In this study, C_1 and C_2 are set 0.4 and 0.5 respectively in advance. $Centre^k = Centre^{k-1} + C_1(Gbest - Centre^{k-1}) + C_2(Rbest^{k-1} - Centre^{k-1})$ $Centre^k: \text{ The central position}$ Gbest: Global optimal position

Non-circular critical failure surface in IRMO

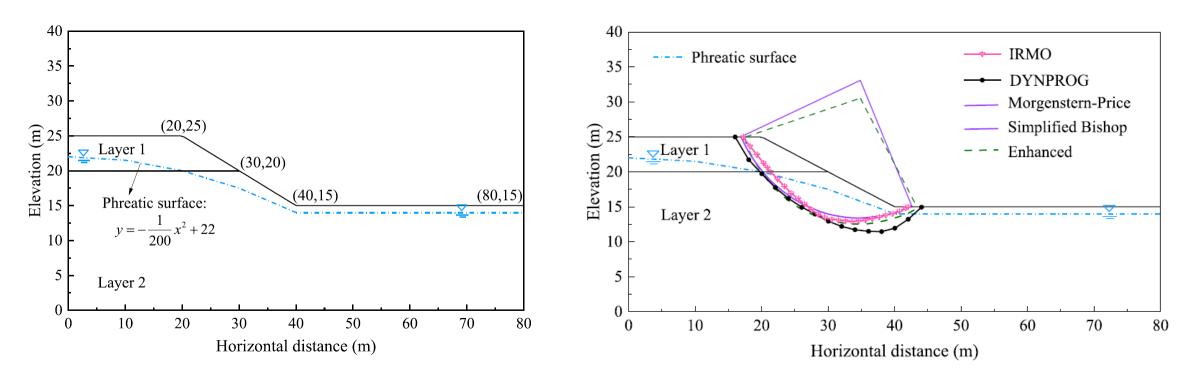
$$[X_{M,N}] = \begin{bmatrix} d_1 & \alpha_{1,1} & \Delta \alpha_{1,2} & \cdots & \Delta \alpha_{1,N} \\ d_2 & \alpha_{2,1} & \Delta \alpha_{2,2} & \cdots & \Delta \alpha_{2,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_M & \alpha_{M,2} & \Delta \alpha_{M,2} & \cdots & \Delta \alpha_{M,N} \end{bmatrix}$$


d : The position of the upper entry point

 α_1 : The inclination angle between the first segment base and vertical direction,

Horizontal distance (m)

Results and Discussion

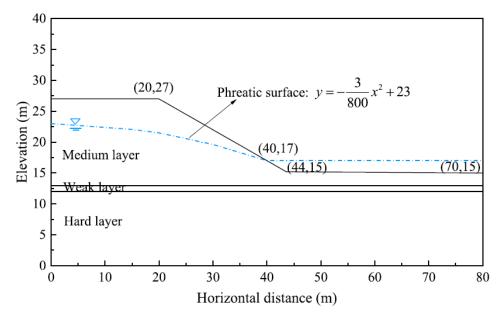


The homogeneous slope model for case study 1.

Fs = Factor of safety

Locations of critical failure surface obtained by various methods for case study 1.

The minimum Fs calculated by IRMO is 1.0073, which is much lower (average in -20.6 % lower) than other results. IRMO has better global searching performance.

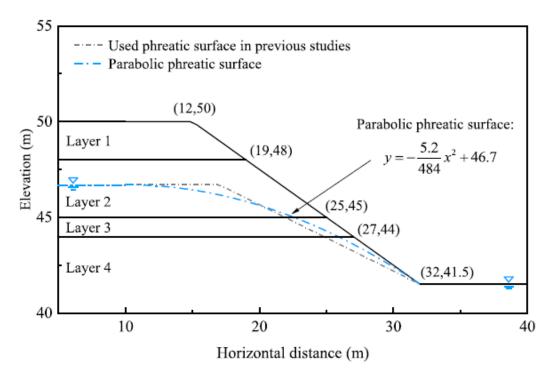

The inhomogeneous slope model for case study 2.

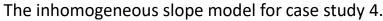
Layer	$\gamma (kN/m^3)$	c(kPa)	φ (°)
1	15	5	20
2	18	10	25

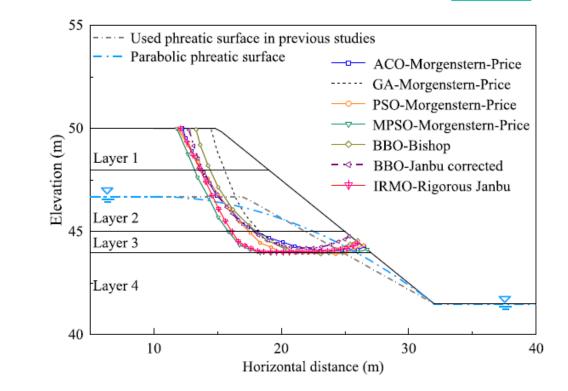
Locations of critical failure surface obtained by various methods for case study 2.

The minimum *Fs* calculated by IRMO is 1.353, which is much lower (average in -6.6 % lower) than other results. IRMO has better global searching performance.

The inhomogeneous slope model for case study 3.


Soil properties	of layered	slope for case	e study 3.
-----------------	------------	----------------	------------


Layer	$\gamma (kN/m^3)$	c(kPa)	φ (°)	
1: Medium layer	15	20	30	
2: Weak layer	18	0	10	
3: Hard layer	20	100	30	



Locations of critical failure surface obtained by various methods for case study 3.

The minimum *Fs* calculated by IRMO is 1.216, which is much lower (average in -9.7 % lower) than other results. IRMO has better global searching performance.

Locations of critical failure surface obtained by various methods for case study 4.

Soil properties of layered slope for case study 4.						
Layer	γ (kN/m ³)	c (kPa)				
1	19.0	15.0				
2	19.0	17.0				

5.0

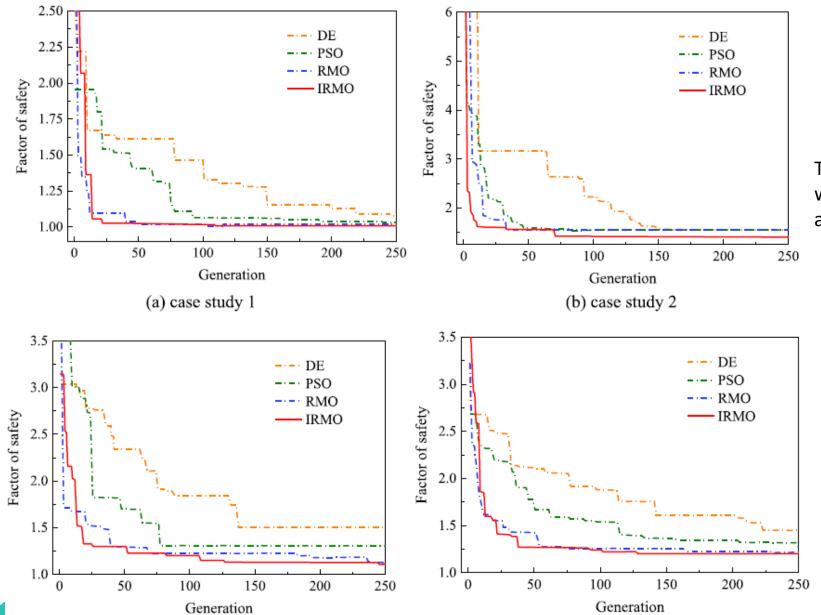
35.0

19.0

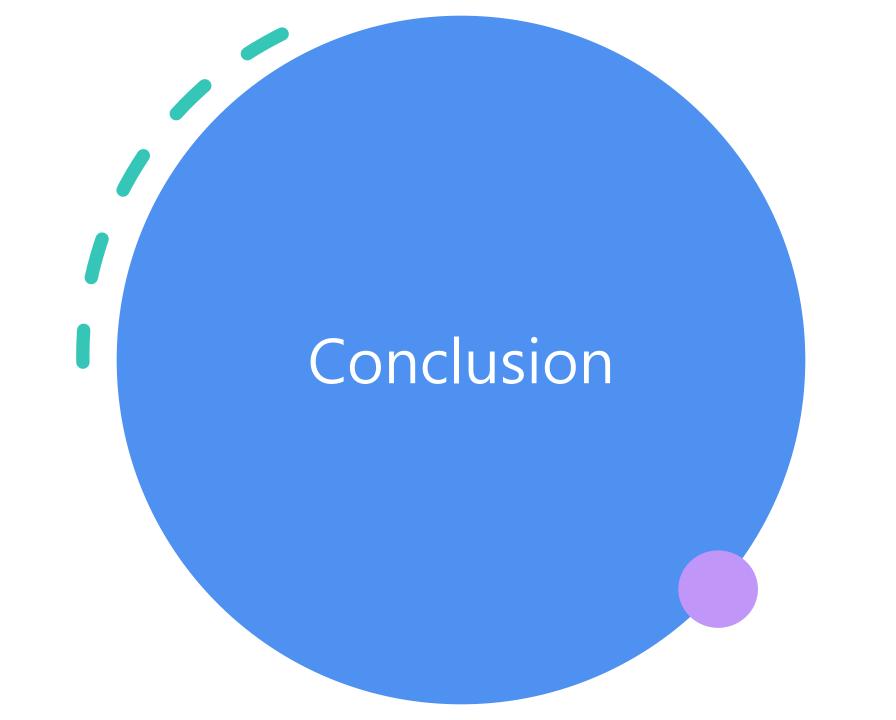
19.0

The minimum *Fs* calculated by IRMO is 1.052, which is much lower (average in -3.6 % lower) than other results. IRMO has better global searching performance.

3

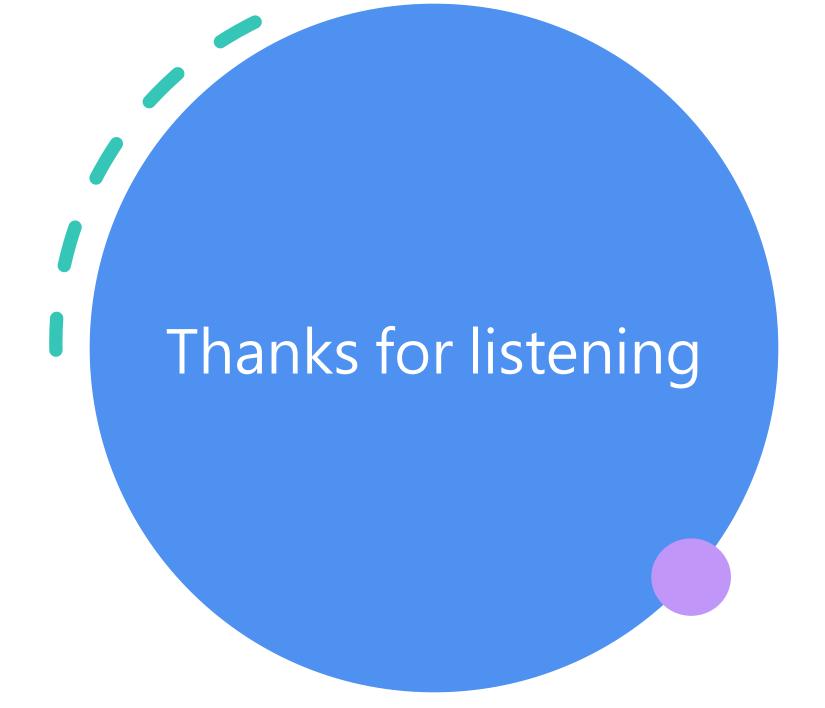

4

φ(°)


20.0 21.0

10.0

28.0



The IRMO algorithm is always the one with the fastest convergence speed and minimum Fs.

- The IRMO shows great applicability and accuracy in implementation for both homogeneous and inhomogeneous slopes by Rigorous Janbu method, which is usually considered difficult to convergence.
- The Rigorous Janbu method of this study could effectively locate the CFS with lower minimum Fs.
- With the advantages of fast convergence, taking up little storage, high stability and simple implementation, the IRMO has appreciable potential to be coupled with FEM methods or embedded in advanced reinforcement learning algorithms for more complex nonlinear stability analysis in the future.

Comparison of the minimum *Fs* obtained by different methods for case study 1.

Research	Critical failure surface	Optimization method	Slope stability analysis method	Factor of safety	Error
Pham and Fredlund [63]	Noncircular	FlexPDE	DYNPROG ($\mu = 0.33$)	1.041	-7.4%
	Noncircular	FlexPDE	DYNPROG ($\mu = 0.48$)	1.187	-33.9%
	Circular	SIGMA/W & SEEP/W	Enhanced ($\mu = 0.33$)	1.132	-24.2%
	Circular	SIGMA/W & SEEP/W	Enhanced ($\mu = 0.48$)	1.171	-14.0%
	Circular	SLOPE/W	Morgenstern-Price	1.168	-13.8%
	Circular	SLOPE/W	Simplified Bishop	1.167	-13.7%
Qin [64]	Circular	Fortran	Fellenius	1.070	-12.9%
	Circular	Fortran	Simplified Bishop	1.185	-33.5%
	Circular	Fortran	Rigorous Janbu	1.178	-32.3%
This study	Noncircular	IRMO	Rigorous Janbu	1.007	Average in -20.6%

Note: μ is the Poisson's ratio.

Comparison of the minimum Fs for case study 2.

Research	Critical failure surface	Optimization method	Slope stability analysis method	Factor of safety	Error
Pham and Fredlund [63]	Noncircular	FlexPDS	DYNPROG	1.413	-4.2%
	Circular	SIGMA/W & SEEP/W	Enhanced	1.454	-6.9%
	Circular	SLOPE/W	Morgenstern-Price	1.485	-8.9%
	Circular	SLOPE/W	Simplified Bishop	1.483	-8.8%
Qin [64]	Circular	Fortran	Fellenius	1.376	-1.7%
	Circular	Fortran	Bishop	1.489	-9.1%
This study	Noncircular	IRMO	Rigorous Janbu	1.353	Average in -6.6%

Comparison of the minimum Fs for case study 3.

•					
Research	Critical failure surface	Optimization method	Slope stability method	Factor of safety	Error
Pham and Fredlund [63]	Circular	SLOPE/W	Morgenstern-Price	1.140	-7.7%
	Circular	SLOPE/W	Simplified Bishop	1.125	-10.9%
	Circular	SIGMA/W & SEEP/W	Enhanced	1.102	-4.5%
	Noncircular	FlexPDS	DYNPROG	1.000	+5.2%
Chen et al. [62]	Noncircular	PSO & FEM	FEM	1.053	-0.1%
This Study	Noncircular	IRMO	Rigorous Janbu	1.052	Average in -3.6%

Comparison of the minimum Fs using optimization algorithms for case study 4.

Research	Critical failure surface	al failure surface Optimization method Slope stability analysis		Minimum Fs	Error	
Zolfaghari, et al [23]	Noncircular	GA	Morgenstern-Price	1.360	-10.6%	
Cheng, et al [10]	Noncircular	SA	Spencer	1.284	-5.3%	
	Noncircular	GA	Spencer	1.232	-1.3%	
	Noncircular	PSO	Spencer	1.210	+0.5%	
	Noncircular	SHM	Spencer	1.233	-1.4%	
	Noncircular	MHM	Spencer	1.225	+0.7%	
	Noncircular	Tabu search	Spencer	1.343	-10.44%	
	Noncircular	ACO	Spencer	1.449	-16.1%	
Kahatadeniya, et al[65]	Noncircular	ACO	Morgenstern-Price	1.377	-11.7%	
Khajehzadeh, et al[32]	Noncircular	PSO	Morgenstern-Price	1.203	+1.1%	
	Noncircular	MPSO	Morgenstern-Price	1.171	+3.8%	
Singh, et al [41]	Circular	BBO	Bishop	1.348	-9.8%	
	Circular	BBO	Fellenius	1.226	-0.8%	
	Circular	BBO	Janbu	2.103	-42.2%	
	Circular	BBO	Janbu corrected	2.104	-42.2%	
This Study	Noncircular	IRMO	Rigorous Janbu	1.216	Average in -9.79	

	Optimization method	Minimum Fs			Standard deviation	Average CPU time (ms)
		Maximum	Minimum	Average		
Case study 1	IRMO (this study)	1.0092	1.0042	1.0066	0.0013	755.85
	RMO	1.0302	1.0116	1.0173	0.0048	713.90
	DE	1.0715	1.0342	1.0571	0.0092	431.30
	PSO	1.0890	1.0293	1.0594	0.0196	2104.05
Case study 3	IRMO (this study)	1.0775	1.0412	1.0638	0.0093	665.5
	RMO	1.1497	1.0341	1.0932	0.0249	643.2
	DE	1.1965	1.1048	1.1395	0.0216	395.9
	PSO	1.2978	1.1138	1.1962	0.0505	2087.6

Comparison of the minimum Fs determined by IRMO, RMO, DE and PSO.