Coupled thermo-hydro-mechanical-chemical modeling by incorporating pressure solution for estimating the evolution of rock permeability

> Presenter: Kai Lin Hsu Advisor: Prof. Shih Jung Wang Date: 112.12.22

Outline

• Introduction

- Methodology
- Results
- Conclusions

Introduction

Introduction	Methodology	Results	Conclusions

- When disposing high-level radioactive wastes in the deep subsurface, the influence of the disposal on the hydraulic property of the rocks must be examined in advance and should be estimated with a required precision.
- In order to predict the long-term evolution of hydraulic properties, a numerical model that can account for the thermo-hydro-mechano-chemical (THMC) coupling process is needed.

Introduction	Methodology	Results	Conclusions

• In the geochemical calculations of the THMC model, mineral dissolution and precipitation occurring on the free surface of the rock are usually considered, but dissolution activities at particle contacts (pressure solution) are not considered. In order to assess the long-term hydraulic properties of rocks, this phenomenon must be incorporated into the modeling process.

Geometrical model of grain-to-grain contact.

Methodology

Introduction	Methodology	Results	Conclusions
Groundwater flow $\frac{\partial(\rho_w \phi)}{\partial t} + \nabla \cdot (\rho_w \mathbf{u})$	$f_m,$	The parameters Where: $ \rho_w : density of the fluid \left(\frac{kg}{m^3} + \frac{kg}{m^3}\right) $ $ \phi : porosity (-) $ $ u : fluid velocity (m/s) $	3)
<i>ol</i> Heat-transport		f_m : source term for the flow $\binom{k}{k}$	$\binom{g}{m^3 \cdot s}$
$(\rho C_p)_{eq} \frac{\partial T}{\partial t} + \rho_w C_{p,w}$	$\mathbf{u} \cdot \nabla T = \nabla \cdot (\mathbf{k}_{eq} \nabla T) + Q_h,$	$(\rho C_p)_{eq}$: equilibrium volumetrie T : temperature (K) $C_{p,w}$: heat capacity of the fluid	$\left(\int_{K \cdot ka}^{J} \right)$
Mechanics:		k_{eq} : equilibrium thermal condu Q_h : heat source $\left(\frac{W}{m^3}\right)$	ctivity $\binom{W}{K \cdot m}$
$-\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{F_v},$		$\sigma : stress \left(\frac{N}{m^2} \right)$ F _v : body force $\left(\frac{N}{m^3} \right)$	
Solute-transport:		c_i : concentration of solute i (m τ : coefficient related to tortuo	sity(-)
$\frac{\partial (c_i \phi)}{\partial t} + \mathbf{u} \cdot \nabla c_i = \nabla$	$\nabla \cdot (\phi \tau \mathbf{D}_{b,i} \nabla c_i) + R_i,$	$D_{b,i}$: diffusion coefficient $\binom{m^2}{R_i}$: source or sink of solute i $\binom{m}{m}$	$\binom{s}{m^{3}}$

Introduction	Methodolo	ogy	Results		Conclusions
$\frac{\partial (c_i \phi)}{\partial t} + \mathbf{u} \cdot \nabla c_i = \mathbf{v}$ $R_i = R_i^{FF} + R_{diss,i}^{PS},$	$\nabla \cdot (\phi \tau \mathbf{D}_{b,i} \nabla c_i) + \mathbf{R}_i,$	R _i : s R _i ^{FF} : R _{diss} ,	ource or sink of rates of free - _i : rates of pres	f solute i - face dissolu sure dissoluti	tion/precipitation ion
$R_{i}^{FF} = k_{+} A (a_{H^{+}})^{n} (k_{H^{+}})^{n} (k_{H^{$	$\frac{1 - Q/K}{c},$ $\frac{M}{c} - \sigma_c \bigg).$ $+ \int \phi_{diss}^{PS} dt,$ $\frac{\phi}{\phi_i} \bigg)^3,$	d grain	Rc0·d	Compaction Pore space	∆d

Introduction		Methodology			Results			Conclusions			
						-				Elias	and Hajash (1992)
	Diame [µm]	eter d Temperature T [°C	Effective stress σ _{eff} [MPa]	Critical stress σ _c [MPa]	Equilibrium constant <i>K</i> [mol m ⁻³]	D	iffusion coefficient D [m ² s ⁻¹]	Dissolution ration k_+ [mol m ⁻²	ate s ⁻¹]	Young's mod- ulus E [GPa]	Poisson's ra- tio v [-]
	215	150	69.0, 34.5, 17.2	73.2	1.79		1.12×10^{-9}	$\textbf{2.51}\times \textbf{10}^{-9}$		72.4	0.17
Porosity [-]	0.40	△ Experimental	data [Elias and l	Hajash, 1	1992]	Porosity [-]	0.36 0.35 0.34 0.33	rediction by cu	rrent m	as and Hajash, nodel	1992]
	0.25	(a) σ _{eff} = 69.0 MPa					(b) $\sigma_{eff} =$	34.5 MPa			
	0	50	100	150	200		0	10	20	30	40
	Time [day]							Tim	e [da	y]	

Introduction	Methodology	Results	Conclusions				
Domain size : 700 m vertical 12.2 m horizon 2.22 m diamete Heat source (radioactive wa laterally at a depth of 450 m	lengths EDZ tal lengths er of cavity (stes) :	: Excavation Distributed Zone					
Hydraulic gradients : 1 m/10	0.80m	 	The second secon				
Thermal gradients : 5 °C/100	0 m		HIMMIN .				
Surface temperature : 15 °C		-700m					
(Japan Nuclear Cycle Development Institute, JNC TN1410 2000-003) Boundaries : all the boundaries assumed to be thermally and hydraulically the outflow boundaries							

Results

Introduction Methodology		lology	Results		Conclusions		
Calculation parameters to simulate long-term permeability.							
Rock type	Initial permeability k _i	Young's modulus <i>E</i>	Poisson's ratio v	Initial porosity φ _i	Thermal conductivity k_e	Heat capacity C_p	
	[m ²]	[GPa]	[-]	[-]	[W m ⁻¹ K ⁻¹]	[J kg ⁻¹ K ⁻¹]	
EDZ	$\begin{array}{l} 1.0 \times 10^{-13} \\ 1.0 \times 10^{-15} \end{array}$	2.5	0.30	0.40	1.60	1500	
Sound		2.5	0.30	0.40	1.60	1500	

Change in temperature and Si concentration distribution with time in the range of $10^{0} \sim 10^{4}$ years under the PS condition.

Introduction	Methodology	Results	Conclusions
--------------	-------------	---------	-------------

To further study the effect of pressure dissolution on permeability changes within the EDZ, the changes with time for the four specific. Three of these four points are located in the EDZ, and the fourth is 5 m from the cavity periphery.

No. 1 : (1.11 m, 0 m)

No. 2 : (1.31 m, 0 m)

No. 3 : (1.51 m, 0 m)

No. 4 : (6.10 m, 0 m)

In	Introduction Methodology		ogy	Results	Conclusions		
y [m ²]	10 ⁻¹³	(a) No pressure so	lution	1 1	The p	ermeability changes with time at	specific locations indicated in :
Permeabilit	10 ⁻¹⁴	No. 1 No. 2 No. 3 No. 4				no PS condition	1
ty [m ²]	10 ⁻¹³	0 2000 2 (b) Pressure solut	4000 6 Time [ye	 5000 8000 ar] 	10000		
Dermeabilit	10 ⁻¹⁴	No. 1 No. 2 No. 3 No. 4	4000 6	I 	10000	PS condition	1
		-	Time [yea	ar]			16

The permeability changes with time under the PS condition at No. 1, indicated in:

initial porosity of 0.40

initial porosity of 0.45

Introduction	Methodology	Results	Conclusions

- A coupled THMC model was developed to investigate the long-term evolution of the permeability in sedimentary rocks. The model solves the heat transfer, the groundwater flow, the variation in induced stresses, and the geochemical reactions.
- The predictions confirmed that the process of the pressure dissolution decreased the permeability especially close to the excavated cavity by one order of magnitude smaller than the initial value, which should delay the transportation of the radioactive materials.

Thank you for listening !