Using thermal tracer tests and numerical model to evaluate the layered flow characteristic in a coastal aquifer system

Presenter:許安誼 An-Yi Hsu Advisor:倪春發 Prof. Chuen-Fa Ni

Table of contents

Introduction

Introduction	Methodology	Results & Conclusion	Future work
Coastal aquifer			

(Hailong Li et al., 2002)

• With the social and economic development in coastal areas, various problems arise

Seawater intrusion \ Stability of coastal structures \ Deterioration of marine environment

• To facilitate subsequent planning of water resources management, it is essential to

determine the coastal aquifer's dynamic exchange with ocean.

SGD

- Submarine Groundwater Discharge (SGD) is recognized as a fundamental hydrological process that supports many coastal biogeochemical cycles and social-ecological systems
- Important land-to-sea material transport pipeline, such as nutrient salts

(Aaron et al., 2021)

Intro	oduction		Methodolo	Future wo	ork			
Observ	ed tem	perature	data					
Distrik	outed Te	mperatur	e Sensing ([OTS) techno	ology enab	les downhole	e temperature	
monit	oring to	study hyd	lrogeologica	al processe	s at high fr	equency and	l spatial resolut	ion
			Laser		Fibe	r is the distributed sensor	Glass molecules	
) ((] :-			Laser Pulses	Backscattered Light		
А	sset Visualizati	on	DTS Detect	or			(Tyler <i>et al.,</i> 2009))
Range Channels Sampling Temperature			Measurement Time	Fibre Type	Referencing	T	T	
0 - 5km*	4	25cm	0.01°C	≥5 sec	50/125µm multimode	x2 PT-100 probes		
							Fiber optical	
						E		
							Silixa Ltd	6

ntr	00	rt i	or
	00		•••

Future work

Study area

- Located at Taoyuan Tableland in northwestern Taiwan
- Due to the considerable distance from the nearby major river, the Dahan River, there is a scarcity of groundwater resources.
- The groundwater level in this area is influenced by the semi-diurnal tide.

 ymp
 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 ymp

 ymp
 ymp
 </tr

Introducti	on	Methodology	Results & Conclusion	Future work		
Study area						

Depth

Viethodology	Results & Conclusion	Future work
Ň	vietnodology	Results & Conclusion

- 3D finite-difference ground-water model (USGS)
- Including many packages to handle different conditions

Governing equation:

$$\frac{\partial}{\partial x} \left[K_x \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_y \frac{\partial h}{\partial y} \right] + \frac{\partial}{\partial z} \left[K_z \frac{\partial h}{\partial z} \right] + W = S_s \frac{\partial h}{\partial t}$$

$K_x K_y K_z$	(L/T)	Hydraulic conductivity
h	(L)	Potentiometric head
S _s	(L^{-1})	Specific storage
W	(T^{-1})	Source or sink of water
t	(T)	Time

Introduction	Methodology	Results & Conclusion	Future work
MT3DMS			

- 3D groundwater solute transport model (USGS)
- Simulate the solute transport in soil pore media during groundwater flow.
- Heat transport is analogous to solute transport in groundwater modeling, adapted equation to assign suitable thermal parameters for temperature species

$$\begin{aligned} & \text{Dispersion} & \text{Advection Source and sink} \\ & \left(1 + \frac{\rho_b K_d^k}{\theta}\right) \frac{\partial(\theta C^k)}{\partial t} = \boxed{\nabla \cdot \left[\theta \left(D_m^k + \alpha \frac{q}{\theta}\right) \nabla C^k\right]} + \boxed{\nabla \cdot (qC^k)} - \boxed{q_s' C_s^k} & \text{Solute transport equation} \\ & \left(1 + \frac{\rho_b K_d^t}{\theta}\right) \frac{\partial(\theta T)}{\partial t} = \boxed{\nabla \cdot \left[\theta \left(D_m^t + \alpha \frac{q}{\theta}\right) \nabla T\right]} + \boxed{\nabla \cdot (qT)} - \boxed{q_s' T_s} & \text{Heat transport equation} \end{aligned}$$

- θ : porosity of soil $\rho_{\rm b}$: bulk density of solid α : heat dispersion tensor
- q: velocity of groundwater
- q'_s : fluid source or sink
- t: time

- *Dif* : hydrodynamic dispersion coefficient
- C^k : concentration of species k
- V_i : velocity of groundwater in pore media
- C_s^k : source or sink concentration of species k
- R_n : chemical reaction

- K_{d}^{L} : distribution coefficient of thermal T: temperature D_m^T : thermal conduction
- T_s: source temperature

Introduction	Methodology	Results & Conclusion	Future work
Nodel setup			
Size : 9*30*50 (m))	$\land \land \land \land$	Test5 (6/17-20)
Grid size: Δx , Δy	, $\Delta z = 1$ m		Heating time Cooling time
Time series: 3729	(min)	\vee \vee \vee \vee	Heating well : BW02 Power(kw) : 3.5
Boundary : Transie	ent/No-flow	6140043	ere to to the to the to the total to the total t
K-value : Falling he	ead test (王新博, 2023)	о с с	o y
	Sea		
		2 03 •	• 11
Ur K1(z=1-18m)	D.17	30m	
K2(z=19-23m)	0.0216		
K3(z=24-28m)	0.124		5
K4(z=29-35m)	0.298		ъ
K5(z=36-50m)	0.0021		
	Boundary condition		
	Transient head / t	emperature Observin	g data of water level

(王新博, 2023)

Ν

Fig. Simulation of in the flow field

Introduction

Methodology

Future work

Flow field

- The velocity and flux in this area is also influenced by tides, it shows lower value during high tides.
- The flux of the profile section is correspond to the hydraulic gradient in this area.

Introduction		Μ	ethodo	logy		Res	ults & C	Conclusio	on		Future wo	ork		
Со	nclusion													
•	Overall,	the	flow	field	model	did	not	vield	worse	results	as	the	simulation	time

increased; the main discrepancy was observed in the crest of the tidal waves.

- The velocity and flux in this area is also influenced by tides, it shows lower value during high tides , revealing a difference of 0.5 (m^3/d) due to tidal effects..
- The result shows that **temperatures** in this area are **not** influenced by tides.
- The simulation results in the **temperature field** shows that the R^2 values range between 0.35 and 0.86. The RMSE values range between 0.13 and 0.08.
- However, the temperature field better illustrates the layered flow characteristics compared to the flow field.

Future work

Introduction	Methodology	Results & Conclusion	Future work

Future work

- Calibrate and validate the temperature simulation to make it more consistent with the observed data.
- Simulating the heating test and then use the temperature simulation to compute the layered groundwater outflow fluxes in this area.

Thank you for listening

Introduction	Methodology	Result	Conclusion
	Thermal Prop	oerty Analyzer	

• Interpreting geological materials and measuring thermal parameters by core sample.

Depth	0-18.0m	18.0-22.5m	22.5-26.7m	27.5-34.0m	34.0-36.0m	36.0-50.0m
Diffusivity(D)	0.35	0.435	0.335	0.494	0.494	0.609
Volume heat capacity(C)	2.645	1.282	2.2	2.907	1.909	2.913
Thermal conductivity(K)	1.976	0.655	0.8	0.55	0.943	1.773

Depth	0-18	18-22.5	22.5-26.7	27.5-34	34-36	36-50		
Thermal conduct ivity	1.976	0.655	0.8	0.55	0.943	1.733	porosit y	0.3
DMCO EF	1.34826E-06	4E-07	5.45855E-07	3.75275E-07	6.43427E-07	1.18246E-06	density	9
							heat capacit y	42

K(m/d)		
1.885		
0.573		
0.678		