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• With the social and economic development in coastal areas, various problems arise

Seawater intrusion \ Stability of coastal structures \ Deterioration of marine environment

(Hailong Li et al., 2002)

Coastal aquifer

• To facilitate subsequent planning of water resources management, it is essential to 

determine the coastal aquifer's dynamic exchange with ocean.
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• Submarine Groundwater Discharge (SGD) is recognized as a fundamental 
hydrological process that supports many coastal biogeochemical cycles and social-
ecological systems

• Important land-to-sea material transport pipeline, such as nutrient salts

SGD

(Aaron et al., 2021)
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Distributed Temperature Sensing (DTS) technology enables downhole temperature 

monitoring to study hydrogeological processes at high frequency and spatial resolution

(Tyler et al., 2009)

6

Observed temperature data

Fiber optical

Silixa Ltd
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• Located at Taoyuan Tableland in northwestern Taiwan

• Due to the considerable distance from the nearby major

river, the Dahan River, there is a scarcity of

groundwater resources.

• The groundwater level in this area is influenced by the

semi-diurnal tide.

Study area TaiCOAST

(王昱, 2003)
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Study area
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Work flow
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(McDonald et al., 1988)
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MODFLOW

• 3D finite-difference ground-water model (USGS)

• Including many packages to handle different conditions

Governing equation:

𝐾𝑥 𝐾𝑦 𝐾𝑧 (L/T) Hydraulic conductivity

ℎ (L) Potentiometric head

𝑆𝑠 (𝐿−1) Specific storage

𝑊 (𝑇−1) Source or sink of water

𝑡 (𝑇) Time
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• 3D groundwater solute transport model (USGS)

• Simulate the solute transport in soil pore media during groundwater flow.

• Heat transport is analogous to solute transport in groundwater modeling, adapted

equation to assign suitable thermal parameters for temperature species

Solute transport equation 

Heat transport equation 

𝜃: porosity of soil
ρb：bulk density of solid
α：heat dispersion tensor
q：velocity of groundwater
qs
′：fluid source or sink
𝑡: time

Kd
t : distribution coefficient of thermal

T: temperature
Dm
T : thermal conduction

Ts: source temperature

1 +
ρb Kd

t

θ

𝜕(θT)

𝜕t
= 𝛻 ∙ θ Dm

t + α
q

θ
𝛻T − 𝛻 ∙ (qT) − qs

′ Ts

MT3DMS

𝐷𝑖𝑗：hydrodynamic dispersion coefficient

Ck：concentration of species k
𝑉𝑖： velocity of groundwater in pore media
Cs
k：source or sink concentration of species k

𝑅𝑛: chemical reaction

Dispersion Advection Source and sink

1 +
ρb Kd

k

θ

𝜕(θ𝐶𝑘)

𝜕t
= 𝛻 ∙ θ Dm

𝑘 + α
q

θ
𝛻𝐶𝑘 − 𝛻 ∙ (q𝐶𝑘) − qs

′𝐶𝑠
𝑘
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Model setup

• Size : 9*30*50 (m)

• Grid size:  ∆𝑥 ,∆𝑦 , ∆𝑧 = 1m

• Time series: 3729 (min)

• Boundary : Transient/No-flow

• K-value : Falling head test

(王新博, 2023)

(王新博, 2023)
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Water level (m)
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Flow field

Tidal curve
Sea

Fig. Simulation of in the flow field

• Have difference of approximately

0.4 meters between low and high

tide levels .

• The overall groundwater flow

direction in this area is from

BW11 to BW01.

• The results indicate that

groundwater levels in this area

are influenced by tides
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Observed
Computed

Flow field
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Simulation of the first tidal wave

• 𝑅2: 0.75-0.99

• RMSE : 0.03-0.16

• BW02 and BW06 in a water 

shortage condition.

• Most inaccurate : crest of tidal

Simulation of the 2nd tidal wave

• 𝑅2: 0.68-0.98

• RMSE : 0.04-0.16

• Most inaccurate : crest of tidal

Simulation of the 3rd tidal wave

• 𝑅2: 0.67-0.96

• RMSE : 0.06-0.16

• Most inaccurate : crest of tidal

Simulation of the 4th tidal wave

• 𝑅2: 0.67-0.98

• RMSE : 0.04-0.16

• Most inaccurate : crest of tidal

Whole time series simulation

• 𝑅2: 0.67-0.98

• RMSE : 0.04-0.16

• Most inaccurate : crest of tidal

• Overall, the model did not yield worse results as the simulation time increased; the main 

discrepancy was observed in the crest of the tidal waves. 

• The simulation results closely match the observed values, providing insights into the 

dynamic exchange process between tidal waves and groundwater levels in this area.

Flow field
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Flow field

• The velocity and flux in this

area is also influenced by tides,

it shows lower value during

high tides.

• The flux of the profile section is

correspond to the hydraulic

gradient in this area.
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Temperature field

Sea
Tidal curve

• The results indicate that

temperatures in this area are

not influenced by tides.

• However, the temperature field

better illustrates the layered

flow characteristics compared

to the flow field.

• Excluding the upper heat

storage layer, the groundwater

temperature in this area is

approximately between 22 ℃

and 23.5℃
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Temperature field
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Simulation of Crest position of tidal curve 

• 𝑅2: 0.35-0.86

• RMSE : 0.08-0.13

• Most inaccurate : 20m

(Low heat transfer response)

Simulation of Trough position of tidal curve 

• 𝑅2: 0.51-0.77

• RMSE : 0.08-0.09

• Most inaccurate : 13m

(Normal heat transfer response)

Simulation of Middle position of tidal curve 

• 𝑅2: 0.57-0.86

• RMSE : 0.07-0.08

• Most inaccurate : 18m

(High heat transfer response)

Simulation of Crest position of tidal curve 

• 𝑅2: 0.53-0.86

• RMSE : 0.05-0.09

• Most inaccurate : 20m

(Low heat transfer response)

(許家毓, 2023)
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Conclusion

• Overall, the flow field model did not yield worse results as the simulation time

increased; the main discrepancy was observed in the crest of the tidal waves.

• The velocity and flux in this area is also influenced by tides, it shows lower value during

high tides , revealing a difference of 0.5 (𝑚3/𝑑) due to tidal effects..

• The result shows that temperatures in this area are not influenced by tides.

• The simulation results in the temperature field shows that the 𝑅2 values range

between 0.35 and 0.86. The RMSE values range between 0.13 and 0.08.

• However, the temperature field better illustrates the layered flow characteristics

compared to the flow field.
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• Calibrate and validate the temperature simulation to make it more consistent with 

the observed data.

• Simulating the heating test and then use the temperature simulation to compute 

the layered groundwater outflow fluxes in this area.

Future work
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K(m/d)

0~13m 1.885

14~17m 0.573

18~21m 0.678

22~25m 0.924

Depth 0-18 18-22.5 22.5-26.7 27.5-34 34-36 36-50

Thermal 

conduct

ivity

1.976 0.655 0.8 0.55 0.943 1.733 porosit

y 0.35

DMCO

EF

1.34826E-06 4E-07 5.45855E-07 3.75275E-07 6.43427E-07 1.18246E-06

density 997

heat 

capacit

y 4200


