LEVEL

C STATE OF STREET

二日本部 第二十二日第

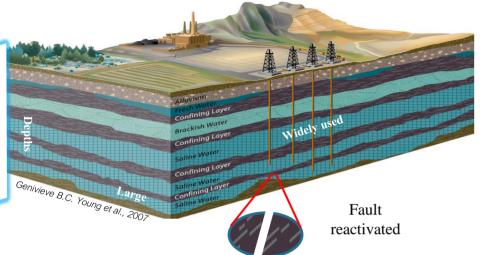
THMC7.1 simulation of fluid exchange due to CO2 leakage along faults during CO2 geo-sequestration in saline aquifer

Advisor: Prof. Jui-Sheng Chen Student : Gia-Huy Lam Date : 2024/03/29

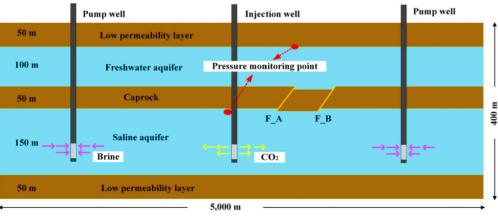
CHI THE R

Contraction of the

THE TAX TO STOLEN



INTRODUCTION


MODEL DESCRIPTION

FUTURE WORK

INTRODUCTION

CO₂ leakage along fault was the largest risk of CO₂ sequestration (Miocic *et al.* (2016)).

Physical model descripts the fluid exchange (Zhang et al. (2018)).

CO2 GEO-SEQUESTRATION

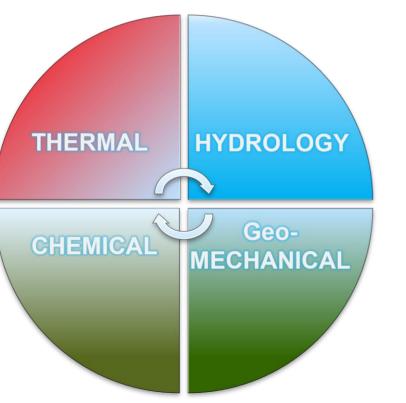
- Carbon Capture and Storage (CCS)
- Capturing carbon dioxide emissions
- Currently, this is the most effective way to reduce GHGs and mitigate the impacts of climate change.
- **Deep saline aquifers** is one of the main candidates to cut anthropogenic CO₂ emissions.
- **Caprock** is a natural barrier to prevent the injected CO₂ escaping from reservoirs.

FLUID EXCHANGE

Associated to **CO₂ leakage, brine** and **freshwater** would escape or lose along the fault from their respective formation.


-

-


-

MOTIVATION

- Recently, **do not have enough information to fully understand** what happens when we inject CO₂ into geological formations.
- Due to some **disadvantages of CO2 geo-sequestration** such as: leakage risk, monitoring and verification challenges, limited storage locations, high costs,...
- Improving the reliability and safety of geo-sequestration sites.
- Ensuring the long-term security of CO2 storage and minimizing environmental risks.

THMC_{7.1} is a 3D finite element model of fu processes are developing by **CAMRDA** - Cent Research Development and Application at NCU

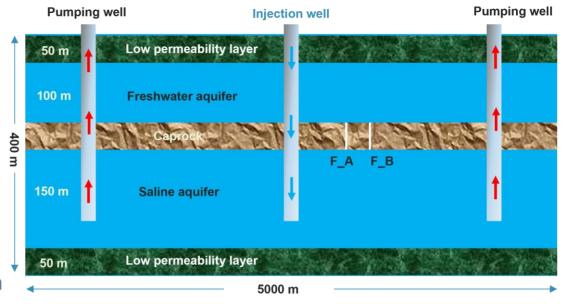
Pioneer:

orge) Yeh
THMC Development at NCU
HYDROGEOCHEM
FEMWATER 👩

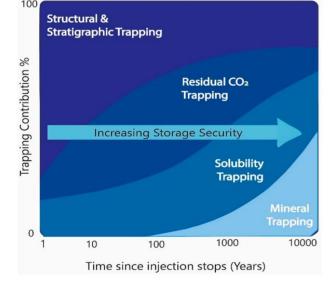
- Revolutionizes the user experience within the complex groundwater simulation process.
- With userfriendly interface can facilitate the modeling and Analysis of complex THMC systems.
- Allowing engeneers to tackle larger scale problem

-

-



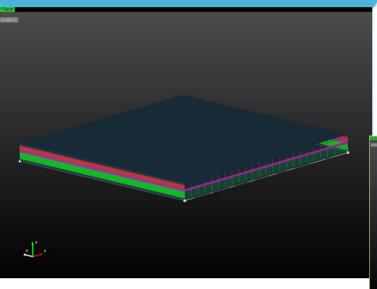
- Plan to closely examine how fluids move and potentially leak along two faults in the caprock layer when CO2 is stored in saline aquifer.
- Employ a 3-D numerical model based on THMC 7.1 to investigate fluid exchange related to CO2 leakage along faults.

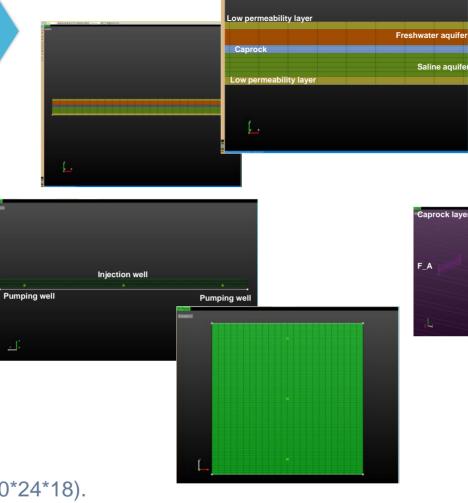


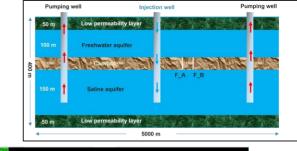
PHYSICAL MODEL

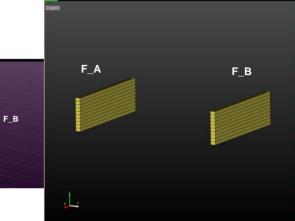
- ♦ Two faults exist in the caprock:
 - + Depth of 200m
 - + Fault zone extents 130m and has the width of 10m
 - + Vertical fault
- Injection well is located in the center of the physical model
- The distence between injection well and pump wells is 2000m
- The distence between F_A and the injection well is 500m

A fluid exchange would certainly occur, associated to CO₂ leakage along activated fault.

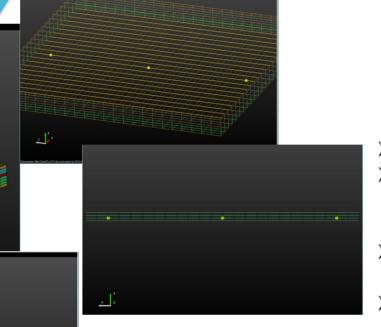

Contribution of trapping mechanisms in a CO₂ storage site at different time scales (IPCC, 2005).


Structural and Stratigraphic Trapping: CO₂ is physically trapped under impermeable rock layers in a similar manner to natural gas.


Residual Trapping: CO₂ molecules are trapped in the pore spaces of the rock due to capillary forces.


Solubility Trapping: Dissolved CO₂ in groundwater forms a slightly denser solution that moves downwards, further away from the atmosphere.

- Grid blocks consisted: 216.000 (500*24*18).
- The mesh refinement was carried out around the faults and injection/pump wells.
- Isothermal conditions were used for simplifying.


INITIAL BOUNDARY:

- Impermeable boundaries were set on the top and bottom surfaces.
- Closed boundaries were set at the other surfaces.

NUMERICAL MODEL

y .

y x

HORIZONTAL CO2 PLUME

- Grid blocks consisted: 4032 (24*24*7).
- Isothermal conditions were used for simplifying.
- Impermeable boundaries were set on the top and bottom surfaces.
- Closed boundaries were set at the other surfaces.

Purpose:

Freshwater ac

Saline aquif

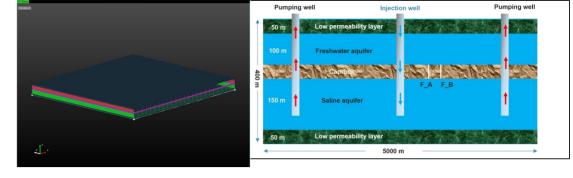
- How CO2 disperses within the saline aquifer post-injection
- Buoyancy forces effect
- A baseline understanding

NUMERICAL MODEL

GOVERNING EQUATION

Multiphase fluid flow (H):

The basic mass conservation equation used in this model was shown as following:


$$\frac{\partial \hat{\rho}_{\alpha} \phi S_{\alpha}}{\partial t} + \nabla \cdot (\hat{\rho}_{\alpha} V_{\alpha}) + \nabla \cdot (\hat{\rho}_{\alpha} \phi S_{\alpha} V_{s}) = M^{\alpha}, \alpha \in \{L\}$$

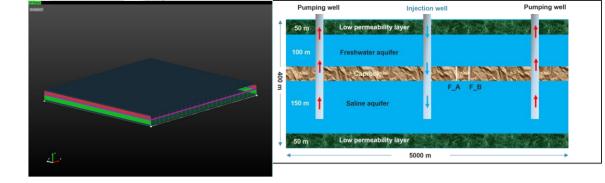
in which $M^{\alpha} = \sum_{i \in \{M_{\alpha}\}} M_{i}^{\alpha}$

(Suk and Yeh (2007, 2008); Tsai and and Yeh (2012, 2013))

 ρ_{α} : the density of α -th fluid phase (ML⁻³)

 ϕ : the volume fraction (-)

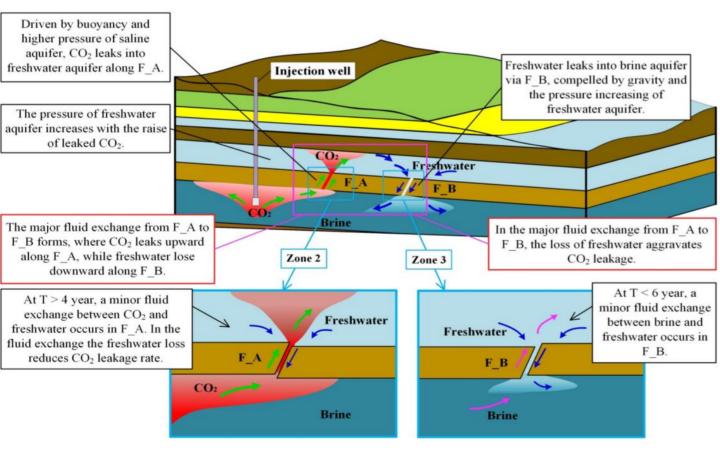
- S_{α} : the normalized saturation of α -th fluid phase (-)
- V_{α} : the Darcy velocity of α -th fluid phase (ML⁻¹)
- V_s : the Darcy velocity of the solid (ML⁻¹)
- M^{α} : the sum of the artifical source/sink rate of all species in α -th fluid phase (ML⁻³T⁻¹)

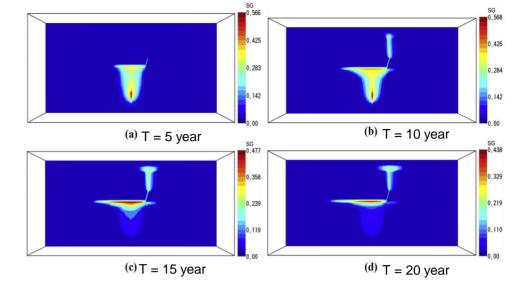

$$\boldsymbol{V}_{\alpha} = -\frac{k_{r\alpha}}{\mu_{\alpha}}\boldsymbol{k} \cdot (\nabla p_{\alpha} + \rho_{\alpha}g\nabla z), \qquad \boldsymbol{V}_{s} = \frac{d\boldsymbol{u}}{dt}$$

 ρ_{α} : the relative permeability of *i*-th fluid phase (-) \mathbf{k} : the permeability of porous medium (L²) μ_{a} : the viscosity of α -th fluid (ML⁻¹T⁻¹) P_{α} : the pressure of α -th fluid phase (ML⁻¹T⁻¹) g: the gravitational acceleration (LT⁻²) z: the potential head (L) \mathbf{u} : the displacement of the media (L)

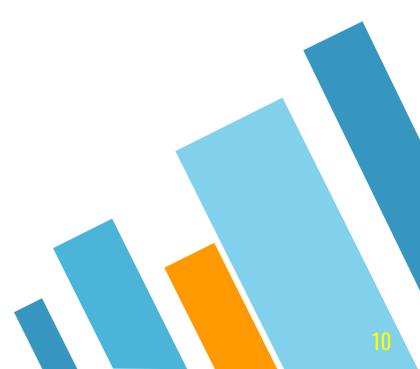
- 1. Solving mass conservation
- 2. Compute new k_{ra} ; μ_a ; ρ_a
- 3. Calculate M^{α} , V_{α}

NUMERICAL MODEL


Initial conditions

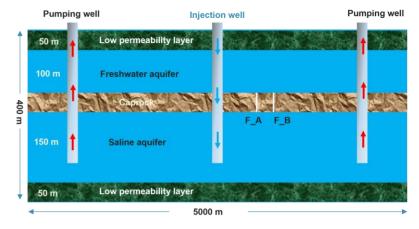


Initial conditions	Value	Table 1 Input parameters.	
Temperature	49 °C	Properties	Values
		Rock compressibility (Pa ⁻¹)	$4.5 imes10^{-10}$
Pressure in saline aquifer	9 Мра	Rock grain density (kg/s) Rock grain specific heat (J/kg °C)	2600 920
Salt mass fraction of saline	0.6%	Formation heat conductivity (W/m °C) λ : index	2.51 0.457
aquifer		S _{lr} : residual liquid saturation	0.3
CO2 injected rate	10 kg/s	S _{ls} : maximum liquid saturation S _{gr} : residual gas saturation	1.0 0.05
Brine pump rate	5 kg/s	P ₀ : pressure coefficient (kPa) Porosity of fault (%)	19.59 30
Simulation time	20 years	Porosity of freshwater aquifer (%) Porosity of saline aquifer (%) Porosity of caprock (%)	15 15 6
		Porosity of lower permeability layer (%) Permeability of fault (mD)	2 590
		Permeability of freshwater aquifer (mD) Permeability of saline aquifer (mD)	59 59
		Permeability of caprock (mD) Permeability of lower permeability layer (mD)	$\begin{array}{c} 5.9 \times 10^{-4} \\ 5.9 \times 10^{-5} \end{array}$


PRELIMINARY EXPECTATION

Mechanism of Fluid exchange (Zhang et al. (2018)).

The distribution of gas CO₂ saturation (Zhang *et al.* (2018)).




-

-

- Validation and consideration of the horizontal flow characteristics of the CO2 plume.
- Apply faults into caprock layer and simulate CO₂ leakage scenarios.

THANKS FOR YOUR LISTENING!