Water Table Response to Rainfall and Groundwater Simulation Using Physics Based Numerical Model WASH123D

Hussain, F., Wu, R. S., & Shih, D. S. (2022). Journal of Hydrology: Regional Studies, 39, 100988.

> Presenter: Tzu-Kuan Chang Advisor: Jui-Sheng Chen Date: 2024/05/17

Outline

- Introduction
- Methodology
- Results
- Conclusions

- Over-pumping and overuse of groundwater are common in southern Taiwan → severe regional ground subsidence and seawater intrusion, as well as corresponding social and economic problems. (Hsu et al., 2015, Tran and Wang, 2020)
- Effective management of groundwater resources requires considering the interaction of surface water and groundwater at different spatial and temporal scales.
- Using physics-based groundwater models to simulate coupled surface water and groundwater flows in watershed systems can inform decision-making regarding the exploration, operation, and management of groundwater resources. (Khan et al., 2017, Shih et al., 2019)

Introduction	Methodology	Results	Conclusions

Objective

• To evaluate the groundwater level response to rainfall and prove the usability of WASH123D in this situation.

- Sub-regional area in Kaohsiung (Meinong, Qishan, Dashu, Daliao)
- 13 observation wells included
- Area: 594km², sea level ~ 951m
- Annual rainfall: 2500mm (69% in rainy season)

 Outcrop: sedimentary rock (Holocene & Pleistocene ~ Pliocene & Miocene)

WASH123D

- An integrated multimedia, multiprocess, physics-based watershed model suitable for various spatio-temporal scales.
- One of the most appropriate protocol to simulate surface-water/groundwater interactions based on full St. Venant equations (1D/2D) and 3D Richards' equation.

Data collection:

- Long-term (2001-2019) monitoring data: WRA website.
- Necessary input data for WASH123D: Government agencies.
 - Eg. Ministry of Interior and Central Geological Survey (CGS), Ministry of Economic Affairs, Taiwan.

Introduction	Methodology	Results	Conclusions

- Regression equation provides parameter (specific yield, and response ratio (best fit slope))
- Specific yield: Inverse of the slope of regression line between rise in groundwater level associated with rainfall.
- Correlation coefficient: Evaluate regression strength analysis.

Rainfall per event (mm)

Mass recession curve (MRC)

- Constructed by combining several individual recession curve segments.
- To understand groundwater flow mechanism.
- Used to estimate hydrogeological parameters (k, recession constant α_1 , α_2).

Results

Hydraulic conductivity estimation

• Rorabaugh equation (1964) :
$$\frac{T}{S_y} = \frac{0.933 * B^2 * \ln(\frac{h_1}{h_2})}{t_2 - t_1}$$

 $\rightarrow \frac{T}{S_y} = \frac{B^2 * \alpha}{1.071} \quad (\because \alpha = \frac{\ln(\frac{h_1}{h_2})}{t_2 - t_1})$

•
$$T = kD$$

•
$$\mathbf{k} = \frac{\mathbf{B}^2 \ast \alpha \ast S_y}{1.071 \ast D}$$

T: transmissivity S_y : specific yield h: height t: time B: aquifer half-width (A/2L) α : recession constant D: effective aquifer depth

Results

- From top to bottom: Aquifer 1 (F1), Aquitard 1 (T1), Aquifer 2 (F2), Aquitard 2 (T2), Aquifer 3-1 (F3-1), Aquitard 3 (T3), and Aquifer 3-2 (F3-2)
- Total 14 vertical layers have been used to conceptualize the quasi-3D groundwater flow i.e. the horizontal flow occurs only within the aquifer layers and vertical flow occurs only between the aquifer layers.

Introduction	Methodology	Results	Conclusions

• 3D mesh development: GMS-Aquaveo (specialized software for groundwater modeling).

*Refinements:

- Correcting the interface layers between aquifers and impermeable layers.
- Adjusting the mesh geometry to accurately represent the syncline morphology and interbedding of different outcropped formations.

Boundary conditions

2D boundary condition

- Zero water depth as a Dirichlet boundary condition (to prevent water passing over the border boundary nodes)
- Zero water stage as a tidal-type Dirichlet boundary condition (along the coastline)
- Input force: rainfall

3D boundary condition

- Initial enforced head attributes: time-dependent total head as a Dirichlet boundary condition
- Variable flux boundary: Rainfall rate (for surface/subsurface interaction)

Dirichlet B.C. (tidal-type)

Results

Materials Fluvial deposit

F1 Alluvial layer, type a1 F1 Alluvial layer, type a2 F1 Terrace deposit, type t Linkou conglomerate Liugui conglomerate Tashe layer Terrace deposit, type C Nanshilun sandstone Kaitzuliao shale Changchikeng layer Tangenshan sandstone **Gutinkeng formation** Wushan formation Aquitards F1 foundation F2 Alluvia layer, type A F2 Alluvia layer, type B F2 Alluvia layer, type C F2 foundation F3-1 Alluvia layer, type A F3-1 foundation Liugui conglomerate, type 2

3-D mesh used for WASH123D simulations *Z magnification: 15.0

Introduction Methodology Results Conclusions	3
--	---

Table 5

Hydrogeological units and associate hydraulic conductivity (*k*) used in this study.

ID	Hydrogeological unit	Symbol	(F1)	(F2)	(F3)	(F3-2)	Lateral k (m/s)
13	Fluvial deposit	F	1	_	_	_	$5.60 imes10^{-4}$
2	Alluvial formation	a1	1	_	_	_	$9.20 imes10^{-5}$
3	Alluvial formation	a2	1	_	_	_	$2.74 imes10^{-4}$
14	Terrace deposit	t	1	_	_	_	$7.74 imes10^{-5}$
12	Linkou conglomerate	Lk	1	1	1	1	$5.16 imes10^{-5}$
26	Liugui conglomerate	Le	1	_	_	_	$1.02 imes 10^{-5}$
20	Tashe layer	Ts	1	_	_	_	$5.57 imes10^{-6}$
4	Terrace deposit	С	1	1	1	1	$1.00 imes10^{-6}$
24	Nanshilun sandstone	Nl	1	1	1	1	$5.07 imes10^{-7}$
23	Kaitzuliao shale	Kz	1	1	1	1	$3.07 imes10^{-7}$
16	Changchikeng layer	Cc	1	1	1	1	$1.75 imes10^{-6}$
25	Tangenshan sandstone	Tn	1	1	1	1	$6.87 imes10^{-6}$
21	Gutinkeng formation	Gt	1	1	1	1	$8.39 imes10^{-7}$
22	Wushan formation	Wu	1	1	1	1	$1.07 imes10^{-7}$
18	F1 foundation	D1	1	_	_	_	$3.50 imes10^{-6}$
6	F2 Alluvial layer	F2/A	_	1	_	_	$2.25 imes10^{-4}$
7	F2 Alluvial layer	F2/B	_	1	_	_	$3.95 imes 10^{-5}$
8	F2 Alluvial layer	F2/C	_	1	_	_	$5.00 imes10^{-6}$
9	F2 foundation	D2	_	1	1	_	$9.00 imes10^{-7}$
10	F3–1 Alluvial layer	F3-1/A	_	_	1	_	$1.11 imes10^{-6}$
11	F3–1 foundation	D3–1	_	_	1	1	$5.00 imes10^{-5}$
27	Liugui conglomerate	Le-2	_	1	1	1	$1.00 imes 10^{-8}$
15	Aquitards	T1-T3	×	×	×	✓	1.00×10^{-8}

Results

Statistical criteria

•
$$MAE = \frac{1}{N} \sum_{i=1}^{N} |GWL_{si} - GWL_{oi}|$$

•
$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (GWL_{oi} - GWL_{si})}{N}}{N}}$$

• $PBIAS = \left[\frac{\sum_{i=1}^{N} (GWL_{oi} - GWL_{si})}{\sum_{i=1}^{N} (GWL_{oi})}\right] * 100$

•
$$NSE = 1 - \frac{\sum_{i=1}^{N} (GWL_{si} - GWL_{oi})^2}{\sum_{i=1}^{N} (GWL_{oi} - \overline{GWL_o})^2}$$

•
$$KGE = 1 - \sqrt{(CC - 1)^2 + \left(\frac{GWL_{SS}}{GWL_{OS}} - 1\right)^2 + \left(\frac{\overline{GWL_S}}{\overline{GWL_O}} - 1\right)^2}$$

 $P_{i=1}^2 \left[\sum_{i=1}^N \left[(GWL_{Si} - \overline{GWL_S}) (GWL_{Oi} - \overline{GWL_O}) \right]^2 \right]$

•
$$R^2 = \left[\frac{\sum_{i=1}^{N} [(GWL_{si} - GWL_{s})(GWL_{oi} - GWL_{o})]^2}{\sum_{i=1}^{N} (GWL_{si} - \overline{GWL_{s}})^2 \sum_{i=1}^{N} (GWL_{oi} - \overline{GWL_{o}})^2} \right]$$

MAE = 0, RMSE = 0, PBIAS = 0, NSE = 1, KGE = 1, $R^2 = 1$ \rightarrow The highest agreement between simulated and observation values is reached.

*Abbreviations

MAE: mean absolute error RMSE: root mean square error PBIAS: percent bias NSE: Nash-Sutcliffe efficiency KGE: Kling-Gupta efficiency GWL: ground water level o: observed s: simulated

Introducti	on	Methodology	Results		Conclusions
		Formular		Range	
	Mean absolute error	$\frac{1}{N}\sum_{i=1}^{N} GWL_{si}-G$	WL _{oi}	0~∞	
	Root mean square error	$\sqrt{\frac{\sum_{i=1}^{N} (GWL_{oi} - GW_{oi})}{N}}$	WL _{si})	0~∞	
	Percent bias	$\left[\frac{\sum_{i=1}^{N}(GWL_{oi}-GW)}{\sum_{i=1}^{N}(GWL_{oi})}\right]$	$\left(\frac{L_{si}}{L_{si}}\right)$	-100%~10	0%
	Nash-Sutcliffe efficiency	$1 - \frac{\sum_{i=1}^{N} (GWL_{si} - G)}{\sum_{i=1}^{N} (GWL_{oi} - \overline{G})}$	$\frac{WL_{oi})^2}{WL_o)^2}$	-∞~1	
	Kling-Gupta efficiency	$1 - \sqrt{(CC - 1)^2 + \left(\frac{GWL_{ss}}{GWL_{os}} - 1\right)}$	$\int^{2} + \left(\frac{\overline{GWL_{s}}}{\overline{GWL_{o}}} - 1\right)^{2}$	-∞~1	
	<i>R</i> ²	$\left[\frac{\sum_{i=1}^{N} [(GWL_{si} - \overline{GWL_s})(GWL_s)]}{\sum_{i=1}^{N} (GWL_{si} - \overline{GWL_s})^2 \sum_{i=1}^{N} (GWL_s)}\right]$	$\frac{L_{oi} - \overline{GWL_o})]^2}{\overline{WL_{oi} - \overline{GWL_o}})^2}$	0≤ <i>R</i> ² ≤1	

Results

Rainfall in four clusters

Introduction

Methodology

Observation well	2מ
Observation wen	R
Xinwei	0.91
Meinong	0.85
Jiyang	0.85
Jiyang GZ	0.83
Qishan	0.95
Tuku	0.92
Zhongzhou	0.87
Ligang	0.92
Xipu	0.95
Dashu	0.89
Jiuqu	0.96
Chaoliao	0.87
Zhaoming	0.93

There exists a strong linear relationship between rainfall and groundwater level fluctuations at all sites.

Rainfall per event (mm)

300 600 900 1200 1500

(13)

1

0.8 0.6 0.4 0.2

0

Results

Simulation results

- Average pumping rate = $1.303 \text{m}^3/\text{s}$,
- Average ground water level dropped 0.10~0.50m

Table 6

Statistical model performance evaluation at three selected sites with and without pumping data.

Obs. Wells	MAE (m)	RMSE (m)	PBIAS (%)	NSE	KGE	R^2
	Without Pumpin	g Data				
Qishan-2	0.20	0.25	-0.50%	0.89	0.84	0.98
Zhongzhou-2	0.13	0.16	-0.40%	0.93	0.95	0.97
Xipu-2	0.12	0.14	-0.40%	0.79	0.82	0.97
	With Pumping D	With Pumping Data				
Qishan-2	0.018	0.027	-0.01%	0.99	0.99	0.99
Zhongzhou-2	0.036	0.052	-0.10%	0.99	0.98	0.99
Xipu-2	0.010	0.014	-0.01%	0.99	0.99	0.99

- The simulation results with and without pumping data are relatively comparable with observations
- There is a reasonable hydrological response of groundwater levels to rainfall and pumping data.

Introduction	Methodology	Results	Conclusions

- A good linear correlation relationship was found between groundwater level responses to associated rainfall.
- Through WASH123D, the simulated results seemed similar to observation data.
- WASH123D is an appropriate protocol to investigate the surface-subsurface interaction in the selected study region and should be a credible approach for future research work and management of groundwater resources.

Thank you for your attention.