

# A new hybrid framework of site selection for groundwater recharge

Javadi, S., Saatsaz, M., Shahdany, S. M. H., Neshat, A., Milan, S. G., & Akbari, S. 2021. A new hybrid framework of site selection for groundwater recharge. *Geoscience Frontiers*, **12**, 101144

Name : Rui-Yu Zha<del>ng</del> Advisor : Jui-Sheng Chen Date : 2024/06/07





# **Out line**



Material and methods







- Population growth followed by increased agricultural, industrial, and urban water consumption, on the one hand and limited surface water resources on the other, have caused irreparable damages to the aquifers in Iran during the past two decades.
- Artificial recharge (AR) is one of the effective methods for increasing aquifer reserves.
- The Clustering techniques are among the methods that take into account several criteria to identify the most suitable sites that have standard features
- MODFLOW was used to simulate the groundwater level and cluster the sites selected, with regards to increase in groundwater level

Study area





Observation well River •

8**4** 

-

 $\mathbb{C}$ ŒŠ

4Z



#### • AHP technique



λ<sub>max</sub> : average value of the consistency vector
â : matrix geometric mean
W(i. j) : alternative weight or priority
N : number of compared alternatives
n : matrix size
CI : consistency index
CR : consistency rate
RI : inconsistency index of the random matrix



- Preparing the paired comparison matrix for each level of the hierarchy starting from the top and continuing downward
- 2. Calculating a weight for each element of the hierarchy
- 3. Estimating the consistency rate (CR)

- CR < 0.1 indicate a consistent matrix
- CR > 0.1 indicate a discontinuous matrix

#### • AHP technique

#### Table 1

Previous research on selecting suitable AR sites.

| Research                              | Country          | Parameters considered in the identification of AR sites                                                                                                                |
|---------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chenini et al.<br>(2010)              | Tunisia          | Rainfall, watershed drainage density, surficial<br>geology and aquifer boundary conditions                                                                             |
| Valverde et al.<br>(2016)             | South<br>America | The slope of the land, soil texture, irrigation<br>network density, and hydraulic characteristics                                                                      |
| Amineh et al.<br>(2017)               | Iran             | Depth, runoff as the water resource, morphology,<br>geology, geomorphology, land use, land cover,<br>drainage density, aquifer characteristics, and<br>aquifer quality |
| Senanayake et al.<br>(2016)           | Sri<br>Lanka     | Rainfall, lineations, slope, drainage, land<br>use/cover, lithology, geomorphology, and soil<br>characteristics                                                        |
| Prabhu and<br>Venkateswaran<br>(2015) | India            | Geologic parameters, geomorphology, lineation,<br>lineation density, drainage density, and land<br>use/cover                                                           |
| Singh et al. (2013)                   | India            | The geomorphological layer, geology, land use,<br>drainage network density, slope, soil texture,<br>aquifer transmissivity, and specific yield                         |
| Singh et al. (2017)                   | India            | Runoff coefficient, slope, drainage density, and<br>rainwater harvesting                                                                                               |
| Manap et al. (2013)                   | Malaysia         | Lithology, slope, land use, lineation density, soil texture, precipitation, drainage density                                                                           |
| Sargaonkar et al.<br>(2010)           | India            | Porosity, land use, slope, topography, soil depth,<br>and water-level fluctuations                                                                                     |



Result

• K-means clustering

$$J(X; V) = \sum_{i=1}^{c} \sum_{k \in i} \left\| x_k^{(i)} - v_i \right\|^2$$
$$v_i = \frac{\sum_{k=1}^{N_i} x_k}{N_i}, x_k \in A_i$$

V = {v<sub>i</sub> | i = 1,...,c} : cluster centers  $x_k^{(i)}$  : the k<sup>th</sup> object belonging to the i<sup>th</sup> cluster  $||x_k^{(i)} - v_i||^2$ : distance measure norm indicating the distance between data points and their respective cluster centers.

 $A_i$ : set of  $N_i$  objects belonging to the i<sup>th</sup> cluster

Introduction

• Davies-Bouldin Index (DBI)

$$R_{jk} = \frac{\sigma_j + \sigma_k}{\|\mu_j - \mu_k\|}, j, k = 1, 2, ..., g \ ; \ k \neq j$$

$$\sigma_j = \sqrt{\frac{1}{n_j} \sum_{x_i \in C_j} \left\| x_i - \mu_j \right\|^2}$$

$$R_j = \max_{k=1,2,\ldots,g;k\neq j} R_{jk}$$

$$I_{DB} = \frac{1}{g} \sum_{i=1}^{g} R_j$$

 $\mu_j$ : mean of all the objects in cluster j  $\sigma_j$ : the within class scatter of the j<sup>th</sup> cluster  $C_j$ : associated with the cluster j  $n_j$ : number of objects in j<sup>th</sup> the cluster.  $R_j$ : maximal pair score with the cluster j  $R_{ik}$ : the score for all the possible pairs of clusters

11

Groundwater level simulation of Yasouj aquifer by MODFLOW

$$\begin{split} & CR_{i,j-\frac{1}{2}k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CR_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CR_{i,j-\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CC_{i,j-\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CC_{i,j+\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CC_{i,j+\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CC_{i,j+\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j-\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j-\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j-1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+1,k}^m - h_{i,j,k}^m \right) \\ & + CV_{i,j+\frac{1}{2},k} \left( h_{i,j+\frac{1}{2$$

Groundwater simulation



Aquifer thickness varied from 80 to 260 m Cell size was considered 500 m  $\times$  500 m



Locations of the observation wells, exploitation wells, input flow, and output flow in the Yasouj aquifer

| Introduction | Material and methods | Result | Conclusion |
|--------------|----------------------|--------|------------|
|--------------|----------------------|--------|------------|

Groundwater simulation



Comparing the northern region with the southern parts of the aquifer figure show that the groundwater level in the northern region of the aquifer is higher, which keeps declining as we move towards the southern areas of the aquifer

| Introduction | Material and methods | Result | Conclusion |
|--------------|----------------------|--------|------------|
|--------------|----------------------|--------|------------|

Groundwater simulation



The highest value for hydraulic conductivity is 13 m/day, belongs to the central part of the aquifer, and the values for its other regions vary from 3 to 13 m/day

15

Groundwater simulation





Seven clusters were selected as the optimal clustering, and the entire aquifer area was divided into seven different regions based on these clusters.

#### Table 2

Ranges of factors based on clusters obtained for the Yasouj aquifer.

| Cluster name No. of members |     | Hydrauli<br>conducti<br>(m/day) | Hydraulic<br>conductivity<br>(m/day) |      | Storage<br>coefficient |       | Alluvium thickness (m) |      | ater (m) | Slope |      |
|-----------------------------|-----|---------------------------------|--------------------------------------|------|------------------------|-------|------------------------|------|----------|-------|------|
|                             |     | Min.                            | Max.                                 | Min. | Max.                   | Min.  | Max.                   | Min. | Max.     | Min.  | Max. |
| C1                          | 119 | 10.5                            | 13.6                                 | 0.12 | 021                    | 86.4  | 119.9                  | 33.7 | 59.8     | 0.13  | 3.54 |
| C2                          | 32  | 6.0                             | 6.5                                  | 0.08 | 0.12                   | 58.5  | 88.5                   | 1.0  | 46.4     | 1.17  | 4.12 |
| C3                          | 79  | 8.0                             | 13.6                                 | 0.1  | 0.18                   | 116.9 | 149.3                  | 45.2 | 84.7     | 0.25  | 3.64 |
| C4                          | 104 | 4.5                             | 7.0                                  | 0.05 | 0.15                   | 94.6  | 132.6                  | 0.6  | 44.2     | 0.69  | 3.83 |
| C5                          | 78  | 5.5                             | 7.0                                  | 0.03 | 0.12                   | 136.9 | 175.4                  | 33.9 | 61.0     | 0.56  | 4.46 |
| C6                          | 48  | 4.0                             | 7.0                                  | 0.03 | 0.10                   | 150.6 | 199.0                  | 56.2 | 103.5    | 0.54  | 4.26 |
| C7                          | 149 | 1.5                             | 4.0                                  | 0.05 | 0.01                   | 95.0  | 119.9                  | 39.7 | 61.2     | 0.12  | 1.50 |

| Introduction | Material and methods | Result | Conclusion |
|--------------|----------------------|--------|------------|
|              | •                    |        |            |



Choosing the appropriate cluster for AR



#### Table 3

Values of  $\Delta h$  (in mm) for the areas selected in the AR project.

|        | Cluster | Cluster | Cluster | Cluster | Cluster    | Cluster | Cluster | Cluster | Cluster |
|--------|---------|---------|---------|---------|------------|---------|---------|---------|---------|
| Date   | 1       | 2       | 3-a     | 3-b     | 4-a        | 4-b     | 5       | 6-a     | 6-b     |
|        |         |         |         |         | $\Delta h$ |         |         |         |         |
| 12-Nov | -0.05   | -0.46   | -0.08   | -0.08   | -0.16      | -0.16   | -0.09   | -0.01   | -0.63   |
| 12-Dec | 0.62    | 3.28    | 0.18    | 0.48    | 0.73       | 0.43    | -0.09   | -0.01   | 0.47    |
| 13-Jun | 1.86    | 10.19   | 0.87    | 1.56    | 2.77       | 2.55    | -0.05   | -0.01   | 2.90    |
| 13-Feb | 3.06    | 17.18   | 1.85    | 2.68    | 5.27       | 5.69    | -0.03   | -0.01   | 5.96    |
| 13-Mar | 4.14    | 23.87   | 2.97    | 3.78    | 7.86       | 9.41    | -0.01   | -0.01   | 9.48    |
| 13-Apr | 5.12    | 30.19   | 4.12    | 4.85    | 10.36      | 13.37   | 0.00    | -0.01   | 13.32   |
| 13-May | 6.0     | 36.17   | 5.26    | 5.87    | 12.73      | 17.35   | 0.3     | -0.01   | 17.39   |
| 13-Jun | 6.82    | 42.00   | 6.39    | 6.89    | 15.00      | 21.39   | 0.9     | 0.00    | 21.78   |
| 13-Jul | 6.88    | 43.67   | 7.18    | 7.28    | 16.19      | 24.43   | 1.5     | 0.01    | 24.84   |
| 13-Aug | 6.31    | 41.79   | 7.47    | 7.11    | 16.04      | 25.92   | 2.5     | 0.03    | 26.33   |
| 13-Sep | 5.73    | 39.68   | 7.42    | 6.87    | 15.30      | 26.27   | 3       | 0.05    | 27.10   |

| Introduction                                                   | Material and methods | Result                                                          | Conclusion |
|----------------------------------------------------------------|----------------------|-----------------------------------------------------------------|------------|
| • Aquifer clusteri                                             | ng                   |                                                                 |            |
| Cluster 2=43 cm<br>Cluster 2=43 cm<br>Cluster 4b<br>Cluster 4b | Cluster 6a = 27.1 cm | 43<br>Cluster 2<br>Cluster 6a<br>Cluster 4b<br>Cluster 4a<br>10 |            |

1 1





| Introduction | Material and methods | Result | Conclusion |
|--------------|----------------------|--------|------------|
|              |                      |        |            |

- Due to limited surface water resources in warm and dry arid regions, the implementation of Aquifer Recharge (AR) projects must be approached with caution
- A brief review of previous studies was conducted to extract criteria influencing the optimal performance of AR projects. The aquifer was divided into various clusters with similar physical characteristics using traditional clustering methods
- Considering the critical situation of aquifers in Iran, the use of clustering and MODFLOW as a numerical modeling tool for aquifers can be applied to prevent cost losses and increase aquifer replenishment



# Thanks for your listening



Groundwater level simulation of Yasouj aquifer by MODFLOW

$$\frac{\partial}{\partial \chi} \left( k_{xx} \frac{\partial h}{\partial \chi} \right) + \frac{\partial}{\partial y} \left( k_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left( k_{zz} \frac{\partial h}{\partial z} \right) + W = S_s \frac{\partial h}{\partial t}$$

 $k_{xx}$ ,  $k_{yy}$ ,  $k_{zz}$ : values of hydraulic conductivity along the x, y, and z coordinate axes(L/T) h: potentiometric head (L)

W : volumetric flux per unit volume representing sources and/or sinks of water, with W<0.0 for flow out of the groundwater system, and W>0.0 for flow in( $T^{-1}$ ) Ss : specific storage of the porous material ( $L^{-1}$ ) t : time (T)