

Numerical simulation of CO₂ storage and CO₂ leakage along fault during CO₂ geosequestration in saline aquifer by THMC software

Presenter: Gia-Huy Lam Advisor: Prof. Jui-Sheng Chen Date: 2024/09/27

OUTLINE

RESULTS & DISCUSSIONS CONCLUSIONS

GLOBAL ISSUE OF CO2 EMISSION

Power generation Transportation Industries Deforestation Land use changes Waste management

Anthropogenic

CO3

Global Carbon Budget (2023):

...

CO₂ concentrations 419.47 ppm 51% increased compared to the stage of pre-industrial (1760s) Temperature increased 1.1°C

The impacts if global warming exceed 1.5 °C

- Extreme weather events
- Sea-level rise
- Biodiversity loss
- Food and water security

GLOBAL RESPONSES AND SOLUTIONS

The global carbon project (IPCC, 2017)

Climate change and sustainability initiatives

(NETzero, COP26, COP28)

REDUCING CO2 EMISSIONS

- ✓ Essential for mitigating climate change
- ✓ Preserving ecosystems

2017 CO₂ emission were 35.5 billion tonnes

2050

2030

Drop by 45 %to 17.9 billion

Come down to 0.0

✓ Ensuring a sustainable future

Technology innovations (Carbon Capture and Storage (CCS))

Rapid Decarbonization (renewable energy sources, energy

efficiency, electrifying transportation)

Nature-based solutions

(Protecting and restoring forests, wetlands, and other ecosystems)

International Cooperation (Strengthening international climate agreements)

Public Engagement and Policy (Raising awareness about climate change)

RESULTS & DISCUSSIONS CONCLUSIONS

CO2 storage in saline aquifer

Contribution of trapping mechanisms in a CO₂ storage site at different time scales (IPCC, 2005).

CO2 GEO-SEQUESTRATION

"Carbon dioxide (CO₂) capture and storage (CCS) is a process consisting of the separation of CO₂ from industrial and energy-related sources, transport to a storage location and longterm isolation from the atmosphere" - Metz, B et al. (2005)

FAULT/ REACTIVATED FAULT

CO₂ leakage along the fault was the largest risk of CO₂ sequestration (Miocic *et al.* (2016)).

DEEP SALINE AQUIFERS

- ✓ Large storage capacity
- ✓ Depth

✓ Natural Trapping Mechanisms

Deep saline aquifers are one of the main candidates to cut anthropogenic CO₂ emissions.

LITERATURE REVIEW

- Newell et al. (2020) considered both vertical and horizontal wellbore orientations for CO2 injection, but using quarter- and half-symmetry domains impacted the accuracy of the results.
- Zhang, L. et al. (2018) and Zhang, L. et al. (2024) investigated the fluid exchange due to CO2
 leakage in geological storage but did not consider the densities of CO2, fresh water, and brine.
- Nordbotten, J. M. et al. (2011) provide a comprehensive synthesis of geological storage of CO2 modeling, with reliable data serving as the basis for simulation.
- Several studies have researched CO2 storage and CO2 leakage, but the fundamental concepts remain unclear.

RESULTS & DISCUSSIONS

CONCLUSIONS

THMC7.1 Thermal Hydrology Geo-Mechanics Reactive Chemical Model

Pioneer:

THMC_{7.1} is a 3D finite element model of fully coupled simulation processes are developing by **CAMRDA** - Center for Advanced Model Research Development and Application at NCU.

- Revolutionizes the user experience within the complex groundwater simulation process.
- With userfriendly interface can facilitate the modeling and analysis of complex THMC systems.
- Allowing engeneers to tackle larger scale problem.

OBJECTIVE

This study employed the **THMC**_{7.1} model to observe the movement and stabilization of CO₂ within the aquifer under different CO₂ density and caprock permeability conditions, and then assess the potential for CO₂ leakage along faults in caprock layers

METHODOLOGY

ESULTS & DISCUSSIONS CONCLUSIONS

CO2 SUPERCRITICAL PHASE

Typical temperature and pressure

- Critical pressure (>= 7,38 MPa)
- Critical temperature (>= 31.1°C)
- In this phase, CO₂ can move through small spaces like a gas but also can dissolve materials like a liquid

Appropriate for CO₂ geo-sequestration

- Increased storage capacity due to high density
- Improved mobility due to low viscosity
- > This phase of CO2 can react with minerals in the storage formation

7

18

Concept of multiphase fluid & saturation

Multiphase fluid flow refers to the simultaneous flow of two or more fluids that are in NAPL (*Non-Aqueous Phase Liquid*) or APL (*Aqueous Phase Liquid*), gas, and/or solid through a medium, such as a porous rock formation.

THMC7.1 model: Multiphase fluid flow (H) module

> Mass conservation equation: (Parker *et al.,* 1987)

 $\frac{\partial \rho_{\alpha} \phi S_{\alpha}}{\partial t} + \nabla \cdot (\rho_{\alpha} V_{\alpha}) + \nabla \cdot (\rho_{\alpha} \phi S_{\alpha} V_{s}) = M^{\alpha} + R^{\alpha}, \alpha \in \{L\}$

 ρ_{α} : the density of α -th fluid phase (kg/dm³) ϕ : the porosity (-) S_{α} : the saturation of α -th fluid phase (-) V_{α} : the Darcy velocity of α -th fluid phase (dm/day) V_{s} : the velocity of the solid (dm/day) M^{α}, R^{α} : the sum of the artificial source/sink rate of all species in α -th fluid phase (kg-dm⁻³-day⁻¹)

K: the hydraulic conductivity (dm/day) k: the permeability of porous medium (dm²) ρ : the density of fluid (kg/dm³) μ : the viscosity of fluid (kg/dm/day) g: the gravitational constant (dm/day²)

> Darcy's law for multiphase:

$$V_{\alpha} = -\frac{\boldsymbol{k}_{r,\alpha}\boldsymbol{k}}{\mu_{\alpha}}(\nabla P_{\alpha} + \rho_{\alpha}g\nabla z)$$

 $k_{r,\alpha}$: the relative permeability of α -th fluid (-) k: the permeability of porous medium (dm²) μ_{α} : the viscosity of α -th fluid (kg/dm/day) P_{α} : the pressure of α -th fluid (kg/dm/day²) ρ_{α} : the density of α -th fluid (kg/dm³) g: the gravitational constant (dm/day²) z: the elevation head (dm)

15

RESULTS & DISCUSSIONS CONCLUSIONS

MODEL SETTING

SETTING OF GEOMETRY

- ➢ Total nodes: 9261 (21*21*21)
- Elements consisted: 8000 (20*20*20)
- > Elements size of the saline aquifer: $100*100*50 (dm^3)$
- The injection point placed at the center of the saline aquifer with depth of 10000 dm

INITIAL CONDITION

Parameter	Unit	value
Temperature	°C	49
Porewater pressure	MPa	9
Resedual gas saturation	-	0.01
Salt mass fraction	%	0.6
Injection rate	kg/s	10

PARAMETERS COLLECTION

Table 1. Parameters of multiphase flow of formation

Parameter	Unit	Caprock	Saline aquifer	fault	Reference
Intrinsic permeability, k	dm ²	5.9*10 ⁻¹⁷	5.9*10 ⁻¹²	5.9*10 ⁻¹¹	Zhang, L. <i>et al.</i> (2018).
Porosity, ϕ	-	0.06	0.15	0.3	Zhang, L. <i>et al.</i> (2018).

Table 2. Parameters of multiphase flow of different phases

Parameter	Unit	CO ₂	Brine	Caprock	Reference
Density, $ ho$	kg/dm ³	0.266 – 0.714	1.23	2.6	Nordbotten, J.M. et al. (2011).
Viscosity, μ	kg/(dm * day)	0.498528	13.6512		Nordbotten, J.M. <i>et al.</i> (2011).
Compressibility, β	(dm * day ²)/kg	1 .5*10 ⁻¹⁸	6.7 *10 ⁻¹⁹	5.9*10 ⁻¹⁹	Zhang et al. (2018), Nordbotten, J. M. <i>et al.</i> (2011)

ON METHODOLOGY

RESULTS DISCUSSIONS

CONCLUSIONS

Different densities of CO₂ supercritical phase

Higher density is more stable and appropriate for CO2 storage in the long term.

 \geq

 \geq

RESULTS DISCUSSIONS

CONCLUSIONS

Difference of caprock permeability

The CO₂ saturation distribution in saline aquifer after 30 days injection $\rho_{CO2} = 0.266 \text{ kg}/dm^3$

Different permeability levels in the caprock layer will significantly impact CO₂ storage and the potential for leakage:

- > Low permeability:
 - + Enhanced containment
 - + Cappilary sealing
 - + Long-term stability

Higher permeability:
 + Increased Leakage Risks
 + Faults and Fractures

METHODOLOGY RESULTS DISCUSSIONS

CONCLUSIONS

APPLY THE FAULT TO SIMULATION

- ➢ Volume: 50000*50000*3000 (dm³)
- ➤ Total nodes: 21483 (31*33*21)
- Elements consisted: 19200 (30*32*20)
- The injection point places at the center of saline aquifer with depth of 10000 dm
- > Injection surface place at the center: $1000^*2000 (dm^2)$

- Fault: length: 1000 dm
 thickness: 250 dm
- Distance from an injection well to the fault: 5000 dm

> This density definitely affects the

storage.

high risk of leakage in long-term

RESULTS DISCUSSIONS

CONCLUSIONS

The CO₂ saturation distribution and leakage along fault

The CO₂ plume reaches the fault at first stage

The CO₂ plume has reached and completely covered the fault at the last time

INTRODUCTION METHODOLOGY RESULTS DISCUSSIONS CONCLUSIONS

- ✓ THMC7.1 successfully simulation CO₂ storage in saline aquifer and CO₂ leakage along fault of caprock layer.
- ✓ With different density of CO₂ supercritical phase can appropriate for different scenerious of CO₂ trapping mechanism.
- ✓ With lower caprock permeability significantly enhance the ability of caprock to effectively trap and contain CO₂. Higher permeability can lead to increased risks of CO₂ leakage from the storage reservoir.

FUTURE WORK

- □ Try to simulate CO₂ storage and the effect of the fault in a long time to prove this study more convincing.
- Consider the connection of flow rate and leakage rate, which affect the safety and stabilization during CO₂ storage time.

Thank you for your listening!