Simulation of Radionuclide Transport in Fractured Porous Media

Seminar presentation

Date: 2024/11/08

Advisor: Prof. Chuen-Fa Ni

Presenter: 111684001 Tzu-Yu Lin 林子瑜

Outline

• Fractured porous media

Introduction

- Final disposal of high-level radioactive waste (HLW)
- Deep geological repository (DGR)

- Deposit the waste in deep and stable geological formations with multi-barrier system.
- Isolate waste from the scope of human activities and biosphere.
- The radionuclides decay over time.
- KBS-3 disposal concept (Swedish Nuclear Fuel Supply Company, 1983)
 multi-barrier system = engineering barrier + natural barrier

Engineering barrier system: Canister Buffer Backfill

Natural barrier system: Host rock (e,g., granite, crystalline rock)

Radionuclide Transport

- If the engineering barrier system fail, the radionuclide might migrate into host rock through groundwater.
- Radionuclide transport is one kind of solution transport with chemical reaction, e.g. decay, sorption.
- Fractures provide major conduits (or barriers) for fluid. Solution might diffusion into matrix (porous media).
- In solid rock (e.g., granite rock), the hydraulic properties of the fracture and surrounding porous medium (matrix) may be huge difference, which made the simulations challenging.
- Fractured porous media (fracture-matrix system)

fracture

matrix

(Zhang et al., 2022)

Fractured porous media

(fracture-matrix system)

- Conceptual models for characterizing fractured porous media systems in numerical model
 - Discrete fracture network (DFN) (only fracture)
 - Equivalent continuum porous medium (ECPM)
 - Dual domain /Hybrid domain

NCU_TW-Hybrid_FEM

- The hybrid domain (HD) model, NCU_TW-Hybrid_FEM, can simulate 3-D flow, advective transport, and diffusion in fractured porous rocks. (Lee et al., 2019, Yu et al., 2021)
- This HD model uses 2D triangular mesh for fractures and 3D tetrahedron mesh for the rock matrix, and allows the system solved equations at the same time.

Hybrid domain

Governing equations (Yu e al., 2021)

incompressible fluid

boundary conditions on the boundaries $\partial \Lambda$ Flow equation u = Darcy velocity (m/s) $\begin{aligned} h\Big|_{\partial\Lambda_h} &= \bar{h}, \qquad on \ \partial\Lambda_h \\ u \cdot n\Big|_{\partial\Lambda_h} &= \bar{u}, \qquad on \ \partial\Lambda_u \end{aligned}$ $u + K\nabla h = 0$, in Λ h = hydraulic head (m), $\nabla \cdot u = q$, $in \Lambda$

the flow parallel to the fracture

K = hydraulic conductivity (m/s),q = source/sink term (1/s), Λ = is the equidimensional model domain (m³). \bar{h} = the hydraulic head on the boundary $\partial \Lambda_h$ (m)

 \bar{u} = the Darcy velocity perpendicular to the boundary surface $\partial \Lambda_{\mu}$ (m/s) concerning the outer unit normal vector n (-).

Assumption for fracture: (1) fracture aperture is uniform and << fracture size (2) hydraulic conductivity of fracture >> matrix

$$\frac{1}{\varepsilon_2}u_2 + K_2^{eq}\nabla_2 h_2 = 0, \quad in \ \Omega_2$$
$$\nabla_2 \cdot u_2 - \sum \left(u_3 \cdot n \Big|_{\Gamma_2} \right) = q_2, \quad in \ \Omega_2$$

 $u_2 = \text{Darcy velocity (m/s)},$ K_2^{eq} = effective hydraulic conductivity perpendicular to the fracture plate (m/s), $h_2 = \text{pressure head (m)},$ ∇_2 = the gradient in the tangent direction (-), q_2 = the source/sink term (1/s).

Simulation of Radionuclide Transport in Fractured Porous Media

Natural Analogues

- "Natural Analogues" (NAs) refers to natural events or processes (usually geological and anthropogenic) similar to those in DGR systems, which helps people understand the long-term behavior of these systems, enhancing confidence in safety and performance assessments.
- NAs can provide data to calibrate models/simulation results used in safety and performance assessment.
- NAs can be used for public communication, since it's easy to understand.

Near-field component	Fabrication material	Analogue
Wasteform	Spent fuel	Cigar Lake uranium orebody
Canister	Copper	Bronze Kronan cannon
Buffer	Compressed bentonite	Dunarobba fossil forest
Near-field rock	Granite	Osamu Utsumi mine

(Miller et al., 2006)

Rock

Buffer

Canister

Wasteform

Geochemistry for Iodine

- Iodine exists in both reduced (I⁻) and oxidized (IO₃⁻) forms, and can also complex with organics and adsorb to soils and ferric oxides.
- Organic matter is the main factor responsible for iodine fixation in soils, leading to higher concentrations in reducing environments and topsoil layers.
- In groundwater, iodide (I⁻) is dominant and does not easily sorb onto minerals due to their negative surface charge.

Chemical Reaction Parameters

- For the chemical reaction parameters of iodine, we refer to NEA-TDB.
- The Nuclear Energy Agency (NEA) Thermochemical Database Project (TDB) represents a reference point with regard to high standard thermochemical data for the radioactive waste management community. (Martinez et al., 2019)

```
SOLUTION SPECIES
+ 6.0 H+ - 3.0 H2O + 1.0 IO3- + 6.0 e- = 1 I-
    log k 111.563 #+/-
     #delta h No data+/-No data
    analytical expression 1.115630E+02 0 0 0 0
     # delfG0m = -51.724 +/- 0.112(kJ/mol)
    # delfH0m = -56.780 +/- 0.050(kJ/mol)
     \# SOm = 106.450 +/- 0.300(J/K/mol)
     # Cp0,m = No data
     # Phreegc-conformed reaction
+ 1.0 H+ + 1.0 IO3- = 1 HIO3
    log k 0.788 #+/-0.029
     #delta h No data #+/-No data
    analytical expression
                           7.880000E-01 0 0 0 0
     # delfG0m = -130.836 +/- 0.797(kJ/mol)
     # delfH0m = No data
     # S0m = No data
     # Cp0,m = No data
     # [2020GRE/GAO]
```

SOLUTION MASTER SPECIES					
#element	species	alk	gfw_formula	element_gfw	
I	IO3-	0	I	126.9045	
I(+5)	IO3-	0	103		
I(-1)	I-	0	I		

https://www.oecdnea.org/jcms/pl_22166/thermo chemical-database-tdb-project

(Martinez et al., 2019)

Conclusion and Future Work

- In the issue of radionuclide transport in solid host rock, we need to consider solute transport and chemical reactions in fractured porous media.
- A hybrid domain (HD) model, NCU_TW-Hybrid_FEM, is introduced. The model use 2D triangular mesh for fractures and 3D tetrahedron mesh for the rock matrix, and allows the system solved equations at the same time.
- This study focuses on the transport of Iodine-129. Preliminary study has been conducted on geological structure, iodine's chemical properties and relevant simulation tools.
- Future work will involve literature review to identify key parameters, such as hydraulic conductivity, porosity, and diffusion rates, and to develop a conceptual model for Iodine-129 transport.

Reference

- Swedish Nuclear Fuel Supply Company/Division KBS. (1983). Final storage of spent nuclear fuel KBS-3 repository, Sweden.
- SKB. (2006). Long-term safety for KBS-3 repositories at Forsmark and Laxemar a first evaluation, main report of the SR-Can project (Report: TR-06-09). Swedish Waste Management Company.
- Zhang, X., Ma, F., Dai, Z., Wang, J., Chen, L., Ling, H., & Soltanian, M. R. (2022). Radionuclide transport in multi-scale fractured rocks: A review. Journal of Hazardous Materials, 424, 127550.
- Taiwan Power Company. (2023). Spent nuclear fuel final disposal program--preliminary development of pre-siting safety case (TPC-SNFD2021-V1).
- Berre, I., Doster, F., & Keilegavlen, E. (2019). Flow in fractured porous media: A review of conceptual models and discretization approaches. Transport in Porous Media, 130(1), 215-236.
- 吴宛庭, 倪春發, 李奕賢. (2017). 三維裂隙網路升尺度方法推估等效參數之差異評估. 農業工程學報, 63(1), 35-41.
- Yu, Y. C., Lee, I. H., Ni, C. F., Shen, Y. H., Tong, C. Z., Wu, Y. C., & Lo, E. (2021). Numerical assessment of the hybrid approach for simulating three-dimensional flow and advective transport in fractured rocks. *Applied Sciences*, 11(22), 10792.
- Lee, I. H., Ni, C. F., Lin, F. P., Lin, C. P., & Ke, C. C. (2019). Stochastic modeling of flow and conservative transport in three-dimensional discrete fracture networks. *Hydrology and Earth System Sciences*, 23(1), 19-34.
- Reijonen, H. M., Alexander, W. R., & Norris, S. (2023). Resilience in knowledge management-the case of natural analogues in radioactive waste management. Process Safety and Environmental Protection, 180, 205-222.
- Miller, W. M., Hooker, P., et al. (2006). Network to Review Natural Analogue Studies and their Applications to Repository Safety Assessment and Public Communication (NAnet): Synthesis Report. European Commission, Luxembourg. EC Report EUR 21919.
- Martinez, J. S., Santillan, E. F., Bossant, M., Costa, D., & Ragoussi, M. E. (2019). The new electronic database of the NEA Thermochemical Database Project. Applied Geochemistry, 107, 159-170.

Thank you for your attention!

Seminar presentation Advisor: Prof. Chuen-Fa Ni Presenter: 111684001 Tzu-Yu Lin 林子瑜