Influences of Geological Materials on Rainfall and Groundwater Level

Presenter: Tzu-Kuan Chang

Advisor: Prof. Jui-Sheng Chen

Date: 2024/10/04

Outline

- Introduction
- Methodology
- Preliminary results
- Conclusions
- Future work

Fig. from https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/mapping/climate-extremes-heavy-rains/

The importance of groundwater

Introduction

• When suffering from water shortage, groundwater will be the suitable choice for emergency use.

Introduction

Relationship between precipitation and groundwater level

龍潭-龍潭(1) 降水量(mm) 地下水位高(m) 150 228 125 - 226 地下冰位高(m) (mm)画火樹 75 224 50 25 222 2020-01 2021-01 2021-07 2022-01 2022-07 2023-01 2020-07 2023-07 2024-01

Fig. Relationship between precipitation and groundwater level Source: https://pubs.usgs.gov/circ/circ1186/html/gen_facts.html

Under normal circumstances, the amount of rainfall will directly affect the groundwater level.

Literature review

Introduction

- Guo, et al. (2021) built a conceptual model → The amplitude of precipitation has linear impacts on amplitude of depth to water table (DWT).
- Zhang, et al. (2017) used a hydrological model to analyze changes in groundwater levels with rainfall events in Florida → Groundwater levels rise rapidly after rainfall, and the rate of recovery is related to rainfall intensity and duration, as well as soil permeability.
- Hussain et al. (2022) used WASH123D to simulate and observed a good linear correlation relationship between groundwater level responses to associated rainfall in Kaohsiung city.

> The relationship between rainfall and groundwater level is obvious in most of the county in Taiwan and abroad.

Future work

Introduction

Observation of other places in Taoyuan

175 地下水位高(m)
150 - 128
125 - 127 2020-01 2020-07 2021-01 2021-07 2022-07 2023-01 2023-07 2024-01 156問

Fig. Distribution map of rainfall gauging stations and groundwater observation wells in Taoyuan City

Introduction

The difference between Longtan and other area in Taoyuan

• Taoyuan is commonly covered by lateritic $soil \rightarrow low permeability$

(lateritic soil thickness ~3m-5m)

 Longtan has the thickest gravel layer among all the other sites.

(reference: 李錫堤教授《桃園台地的地形與地質》)

Material and thickness may be key to differences in how groundwater flows.

Fig. 八德(1), 瑞原(1) and 龍潭(1) Groundwater observation well lithology description

About THMC

Introduction

- A model developed by hydroscience chair professor Gour-Tsyh Yeh.
- Physical based comprehensive computational model for simulating coupling thermal, hydraulic, geo-mechanical, and chemical processes in subsurface media.
- Considered unsaturated and saturated zones in simulation.

FEMWATER

- 1. Flow
- 2. Solute transport

HYDROGEOCHEM

- 1. Flow
- 2. Solute transport and chemical reaction
- 3. Heat transfer

THMC

- 1. Flow
- 2. Solute transport and chemical reaction
- 3. Heat transfer
- 4. Geomechanics

Fig. Chair professor Gour-Tsyh Yeh

Introduction	Methodology	Preliminary result	Conclusions	Future work

	THMC	MODFLOW
Saturated zone	V	V
Unsaturated zone	V	X

- THMC is the most efficient and with the most complete features.
- MODFLOW cannot simulate flow in unsaturated zone.
- Infiltration in MODFLOW is assumed time-invariant → not accurate!

Objective

Introduction

• Use THMC to establish hypothetical two-dimensional models to simulate different materials and stratigraphic arrangements to see the impact on the relationship between rainfall and groundwater level changes.

Governing equations for flow through saturated-unsaturated media

$$\frac{\rho}{\rho_0} F \frac{\partial h}{\partial t} - \frac{\rho}{\rho_0} = \nabla \cdot \left[K \cdot \left(\nabla h + \frac{\rho}{\rho_0} \nabla z \right) \right] + \frac{\rho^{ss}}{\rho_0} q$$

 ρ : fluid density with dissolved chemical concentrations (M/L³)

 ρ_0 : referenced fluid density at reference pressure ρ_0 = 1atm, reference temperature T_0 =298 °K and zero chemical concentration (M/L³)

 ρ^{ss} : fluid density of either injection or withdraw (M/L³)

h: pressure head (L)

t: time (T)

Introduction

F: generalized storage coefficient (1/L)

K: hydraulic conductivity tensor (L/T)

z: potential head (L)

q: source / sink of fluid $[(L^3/L^3)/T]$

 α ': modified compressibility of the soil matrix (1/L)

Generalized storage coefficient F

$$F = \alpha' \frac{\theta_e}{n_e} + \beta' \theta_e + n_e \frac{dS}{dh}$$

 β ': modified compressibility of the liquid (1/L)

 θ_e : effective moisture content (L³/L³)

 n_e : effective porosity (L^3/L^3)

S: degree of effective saturation of water

h: pressure head (L)

Hydraulic conductivity tensor **K**

$$K = \frac{\rho g}{\mu} k = \frac{\frac{\rho}{\rho_0}}{\frac{\mu}{\mu_0}} \frac{\rho_0 g}{\mu_0} k_s k_r = \frac{\frac{\rho}{\rho_0}}{\frac{\mu}{\mu_0}} K_{so} k_r$$

p: fluid density with dissolved chemical concentration

 ρ_0 : referenced fluid density at zero chemical concentration (M/L³)

μ: fluid dynamic viscosity with dissolved chemical concentration [(M/L)/T] μ_0 : fluid dynamic viscosity at zero chemical concentration [(M/L)/T]

k: permeability tensor (L^2) $\mathbf{k_s}$: saturated permeability tensor (L²)

 \mathbf{K}_{so} : referenced saturated hydraulic conductivity tensor (L/T)

 \mathbf{k}_{r} : relative permeability or relative hydraulic conductivity (dimensionless)

g: gravity (L/T²)

Darcy velocity V (L/T)

$$V = -\underline{K} \cdot \left(\frac{\rho_0}{\rho} \nabla h + \nabla z \right)$$

ρ: fluid density with dissolved chemical concentration

 ρ_0 : referenced fluid density at zero chemical

concentration (M/L^3)

h: pressure head (L)

t: time (T)

K: hydraulic conductivity tensor (L/T)

z: potential head (L)

Different stage of conceptual model

• Single homogeneous material

Introduction

- Two-layered lateral material
- Multiple material with different strata arrangement

Future work

Single homogeneous material

• Model size: 27000m*250m (quadrilateral)

• Elements: 10800 (1080*10)

Introduction

• Total nodes: 11891 (1081*11)

• Material 1: gravel, clay, fine sand

Two-layered lateral material

• Size:

Introduction

- Layer 1: 27000m*125m
- Layer 2: 27000m*125m
- Elements: 10800 (1080*10)
- Total nodes: 11891 (1081*11)
- Material: gravel, clay, fine sand

	1	2	3	4	5	6
Material 1	Gravel	Clay	Gravel	Fine sand	Fine sand	Clay
Material 2	Clay	Gravel	Fine sand	Gravel	Clay	Fine sand

Multi-material with different strata arrangement

• Elements: 10800 (1080*10)

Introduction

• Total nodes: 11891 (1081*11)

Two material combination

	1	2	3	4	5	6
Material 1	gravel	clay	gravel	fine sand	fine sand	clay
Material 2	clay	gravel	fine sand	gravel	clay	fine sand
Material 3	gravel	clay	gravel	fine sand	fine sand	clay

• Three material combination

	1	2	3	4	5	6
Material 1	gravel	gravel	fine sand	fine sand	clay	clay
Material 2	fine sand	clay	gravel	clay	gravel	fine sand
Material 3	clay	fine sand	clay	gravel	fine sand	gravel

Future work

Initial condition and boundary conditions of numerical model

Type	Value	Location
Initial condition	-200 200 -80	Top boundary Bottom boundary Other nodes
Boundary condition (Dirichlet)	Total head = 0m	Left boundary
Boundary condition (Variable)	Rainfall: 2mm/day	Top boundary

Introduction

Fig. Guanyin-Longtan stratigraphic section (from http://pc183.hy.ntu.edu.tw/gwater/d6.php)

Parameters of numerical model

Material	Porosity	Kxx (m/day)	Kzz (m/day)
Gravel	0.35	1.038*103	1.038*102
Clay	0.55	2.16432*10-6	2.16432*10 ⁻⁷
Fine sand	0.4	8.64864	0.864864

Source: Domenico an Schwartz (1998)

• Time: 100 days

Introduction

Results of single homogeneous material models

• Gravel (blue line) has the most significant change in total head, pressure, and saturation during simulation.

• It is hard for fluid to flow in clayey material.

Introduction

• Clay makes it more difficult for groundwater to recharge.

Future work

Introduction

- Set up more multi-material conceptual models
- Change the thickness of models
- Incorporate regional rainfall observation data into groundwater flow simulations

Thank you for your attention.