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Where does all the rain in Taiwan go?

• When suffering from water shortage, groundwater will be the suitable choice for emergency use.

The importance of groundwater

Reference: https://www.taisounds.com/news/content/116/57825

Only 20% of water can be used!

Capability of groundwater:

✓ Drinking water source

✓ Agricultural irrigation

✓ Industrial usage

✓ Ecological balance

✓ Drought resistance

✓ Geological stability

https://www.taisounds.com/news/content/116/57825


Under normal circumstances, the amount of rainfall will directly affect the groundwater level. 
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Fig. Relationship between precipitation and groundwater level

Source: https://pubs.usgs.gov/circ/circ1186/html/gen_facts.html 5

Relationship between precipitation and groundwater level

https://pubs.usgs.gov/circ/circ1186/html/gen_facts.html


Literature review

• Guo, et al. (2021) built a conceptual model → The amplitude of precipitation has linear impacts on amplitude 
of depth to water table (DWT). 

• Zhang, et al. (2017) used a hydrological model to analyze changes in groundwater levels with rainfall events 
in Florida → Groundwater levels rise rapidly after rainfall, and the rate of recovery is related to rainfall 
intensity and duration, as well as soil permeability.

• Hussain et al. (2022) used WASH123D to simulate and observed a good linear correlation relationship 
between groundwater level responses to associated rainfall in Kaohsiung city.

➢ The relationship between rainfall and groundwater level is obvious in most of the county in Taiwan and abroad.
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Fig. Distribution map of rainfall gauging stations and groundwater observation wells in Taoyuan City
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Rainfall gauging station

Groundwater observation well
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Observation of other places in Taoyuan



• Taoyuan is commonly covered by lateritic 
soil → low permeability

(lateritic soil thickness ~3m-5m)

• Longtan has the thickest gravel layer 
among all the other sites.

(reference:李錫堤教授《桃園台地的地形與地質》)

Fig. 八德(1) , 瑞原(1) and 龍潭(1) Groundwater observation well lithology description
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Material and thickness may be 

key to differences in how 

groundwater flows.

The difference between Longtan and other area in Taoyuan



About THMC

• A model developed by hydroscience chair professor Gour-Tsyh Yeh.

• Physical based comprehensive computational model for simulating coupling 
thermal, hydraulic, geo-mechanical, and chemical processes in subsurface 
media.

• Considered unsaturated and saturated zones in simulation.
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Fig. Chair professor Gour-Tsyh Yeh
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THMC MODFLOW

Saturated zone V V

Unsaturated zone V X

• THMC is the most efficient and with the most complete features.

• MODFLOW cannot simulate flow in unsaturated zone.

• Infiltration in MODFLOW is assumed time-invariant → not accurate!
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Objective

• Use THMC to establish hypothetical two-dimensional models to simulate different 
materials and stratigraphic arrangements to see the impact on the relationship 
between rainfall and groundwater level changes.
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Governing equations for flow through saturated-unsaturated media

ρ: fluid density with dissolved chemical concentrations (M/L3)

ρ0: referenced fluid density at reference pressure p0= 1atm, reference temperatureT0=298 °K and zero chemical concentration (M/L3)

ρss: fluid density of either injection or withdraw (M/L3)

h: pressure head (L)

t: time (T)

F: generalized storage coefficient (1/L)

K: hydraulic conductivity tensor (L/T)

z: potential head (L)

q: source / sink of fluid [(L3 / L3)/T]

𝜌
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ρ: fluid density with dissolved chemical concentration

ρ0: referenced fluid density at zero chemical concentration (M/L3)

μ: fluid dynamic viscosity with dissolved chemical concentration [(M/L)/T]

μ0: fluid dynamic viscosity at zero chemical concentration [(M/L)/T]

k: permeability tensor (L2)

ks : saturated permeability tensor (L2)

Kso: referenced saturated hydraulic conductivity tensor (L/T)

kr : relative permeability or relative hydraulic conductivity (dimensionless)

g: gravity (L/T2)

ρ: fluid density with dissolved chemical concentration

ρ0: referenced fluid density at zero chemical 

concentration (M/L3)

h: pressure head (L)

t: time (T)

K: hydraulic conductivity tensor (L/T)

z: potential head (L)

α’: modified compressibility of the soil matrix (1/L)

β’: modified compressibility of the liquid (1/L)

θe: effective moisture content (L3 /L3)

ne: effective porosity (L3 /L3)

S: degree of effective saturation of water

h: pressure head (L)

𝐹 = 𝛼′
𝜃𝑒
𝑛𝑒

+ 𝛽′𝜃𝑒 + 𝑛𝑒
𝑑𝑆
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𝜌
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𝜌0𝑔
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∇ℎ + ∇𝑧

Darcy velocity V (L/T)

Hydraulic conductivity tensor K

Generalized storage coefficient F
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Different stage of conceptual model

• Single homogeneous material 

• Two-layered lateral material

• Multiple material with different strata arrangement
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Single homogeneous material

• Model size: 27000m*250m (quadrilateral)

• Elements: 10800 (1080*10)

• Total nodes: 11891 (1081*11)

• Material 1: gravel, clay, fine sand

Introduction Methodology Preliminary result Conclusions Future work

15



Two-layered lateral material

• Size: 

• Layer 1: 27000m*125m 

• Layer 2: 27000m*125m

• Elements: 10800 (1080*10)

• Total nodes: 11891 (1081*11)

• Material: gravel, clay, fine sand
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1 2 3 4 5 6

Material 1 Gravel Clay Gravel Fine sand Fine sand Clay

Material 2 Clay Gravel Fine sand Gravel Clay Fine sand
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Multi-material with different strata arrangement

• Elements: 10800 (1080*10)

• Total nodes: 11891 (1081*11)
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1 2 3 4 5 6

Material 1 gravel clay gravel fine sand fine sand clay

Material 2 clay gravel fine sand gravel clay fine sand

Material 3 gravel clay gravel fine sand fine sand clay

1 2 3 4 5 6

Material 1 gravel gravel fine sand fine sand clay clay

Material 2 fine sand clay gravel clay gravel fine sand

Material 3 clay fine sand clay gravel fine sand gravel

• Two material combination

• Three material combination
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Initial condition and boundary conditions of numerical model

Type Value Location

Initial condition -200

200

-80

Top boundary

Bottom boundary

Other nodes

Boundary condition

(Dirichlet)

Total head = 0m Left boundary

Boundary condition

(Variable)

Rainfall: 2mm/day Top boundary
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Fig. Guanyin-Longtan stratigraphic section

(from http://pc183.hy.ntu.edu.tw/gwater/d6.php )

http://pc183.hy.ntu.edu.tw/gwater/d6.php


Parameters of numerical model

• Time: 100 days

Material Porosity Kxx (m/day) Kzz (m/day)

Gravel 0.35 1.038*103 1.038*102

Clay 0.55 2.16432*10-6 2.16432*10-7

Fine sand 0.4 8.64864 0.864864
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Source: Domenico an Schwartz (1998)



Results of single homogeneous material models

• Gravel (blue line) has the 
most significant change in 
total head, pressure, and 
saturation during simulation.
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• It is hard for fluid to flow in clayey material.

• Clay makes it more difficult for groundwater to recharge.
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Flow chart
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Future work

• Set up more multi-material conceptual models

• Change the thickness of models

• Incorporate regional rainfall observation data into groundwater flow simulations
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Thank you for your attention.
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