Review Paper

Machine learning for faster estimates of groundwater response to artificial aquifer recharge

Fernandes, V. J., de Louw, P. G., Bartholomeus, R. P., & Ritsema, C. J. (2024). Journal of Hydrology, 637, 131418.

Presenter: Vo Thi Kim Huong Advisor: Prof. Jui-Sheng Chen Date: 2024/11/27

Motivation and Objective

METHODOLOGY

How were Machine Learning models trained?

OUTLINE

Model Performance

CONCLUSION

Review original Objective

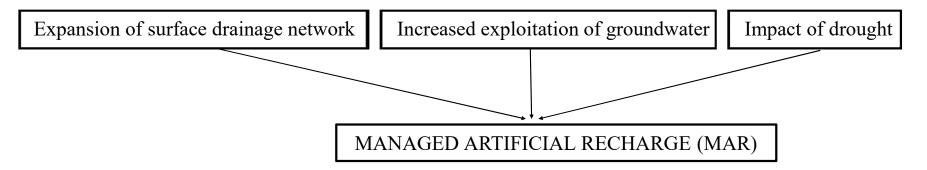
INTRODUCTION

METHODOLOGY

> RESULTS & DISCUSSION

CONCLUSION

RESEARCH MOTIVATION



MAR: infiltration, direct injection, and filtration techniques.

identify the optimal location, recharge rate and combination of the recharge sites

Challenge: Traditional numerical groundwater models too slow for decision-making in MAR site optimization.

Machine Learning (ML) models: capture interaction between variables without run detail simulation \rightarrow predict groundwater response to recharge **quickly** and **efficiently**.

INTRODUCTION

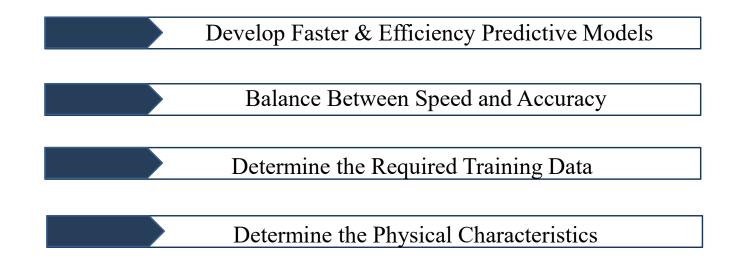
RESULTS & DISCUSSION

CONCLUSION

OBJECTIVE

Provide faster and more efficient estimates of groundwater response to artificial aquifer recharge

METHODOLOGY



RESULTS & DISCUSSION

CONCLUSION

METHOD

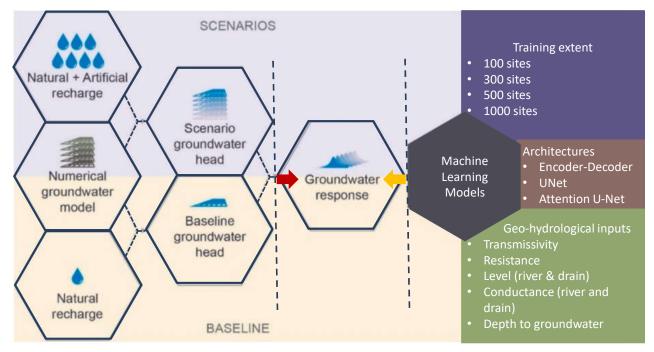


Fig. 1 Two main parts of methodology

Data Generation: Recharge rates (5–25 mm/day) and training area (0.01–1 km²) were selected using **random function** (Latin Hypercube Sampling and Orthogonal Array Latin Hypercube Sampling)

RESULTS & DISCUSSION

CONCLUSION

NUMERICAL MODEL (AMIGO – Actueel Model Instrument Gelderland Oost)

Simulate the groundwater system in the Baakse Beek catchment

Study area:

Baakse Beek catchment (Netherlands).

MODFLOW-2005: Tile drainage (**DRN package**), ditches/streams (**RIV package**) the surface water network drains the groundwater.

Boundary: maintain at distance of three times the leakage factor ensure not influence

In steady-state simulations, the storage coefficient is zero and not used in the numerical or ML models

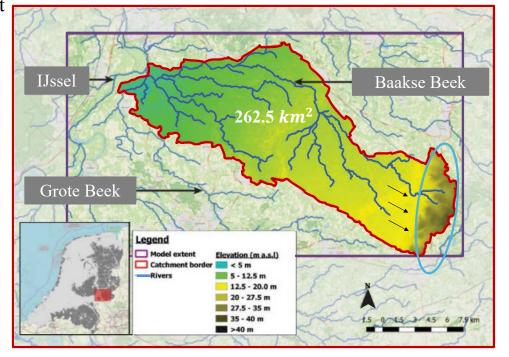


Fig. 2 Baakse Beek catchment (Netherland)

Geology: Pleistocene sands, 200 m thick; highly transmissivity \rightarrow enabling groundwater flow

RESULTS & DISCUSSION

CONCLUSION

MACHINE LEARNING MODEL: HOW DO THEY WORK?

Predict steady-state groundwater response to artificial recharge.

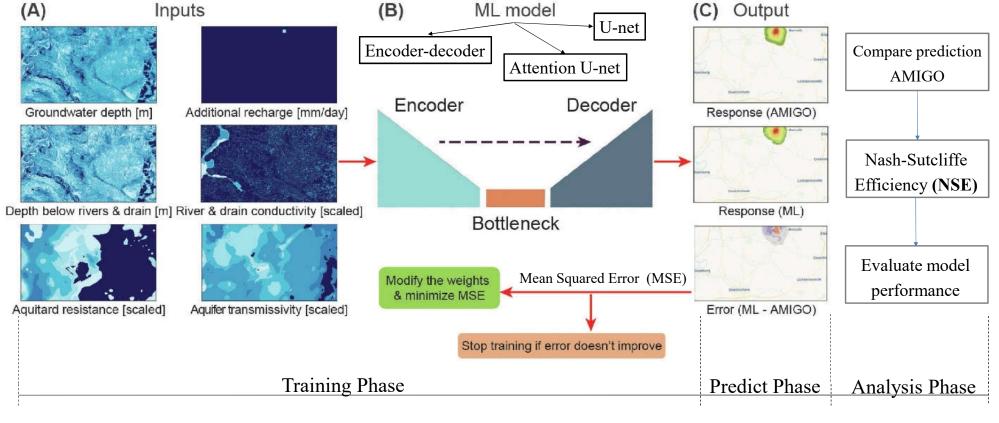


Fig. 3 Training process of ML models

RESULTS & DISCUSSION

CONCLUSION

KEY CHARACTERISTICS

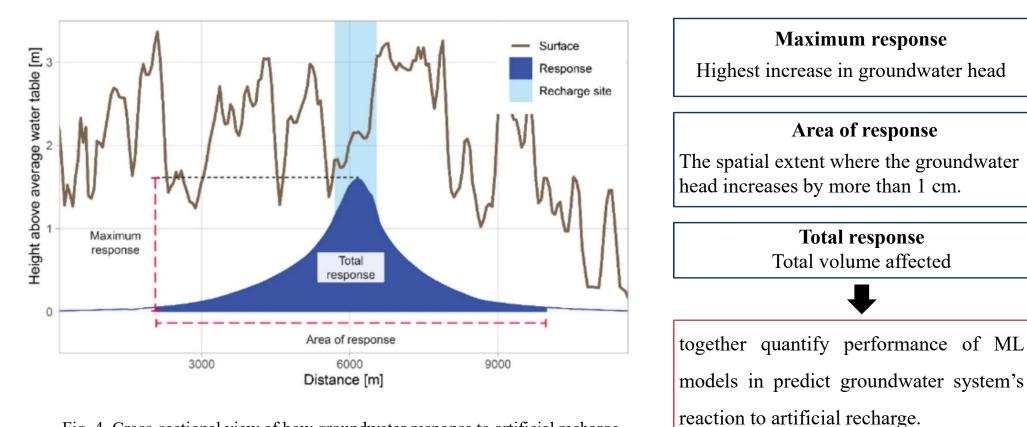


Fig. 4. Cross-sectional view of how groundwater response to artificial recharge

7

RESULTS & DISCUSSION

CONCLUSION

MODEL PERFORMANCE: FACTOR EFFECT

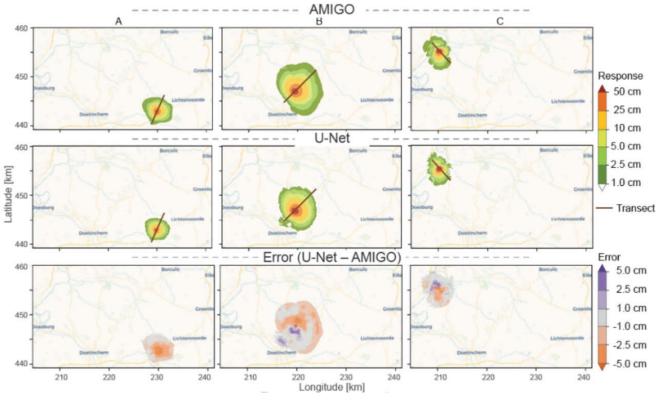


Fig. 5 Map view of response for 3 recharge sites

The recharge sites selected for their asymmetric response caused by the interaction between the groundwater and the surface water network (Groote Beek River and IJssel River). 8

RESULTS & DISCUSSION

CONCLUSION

MODEL PERFORMANCE: ACCURACY AND SPEED

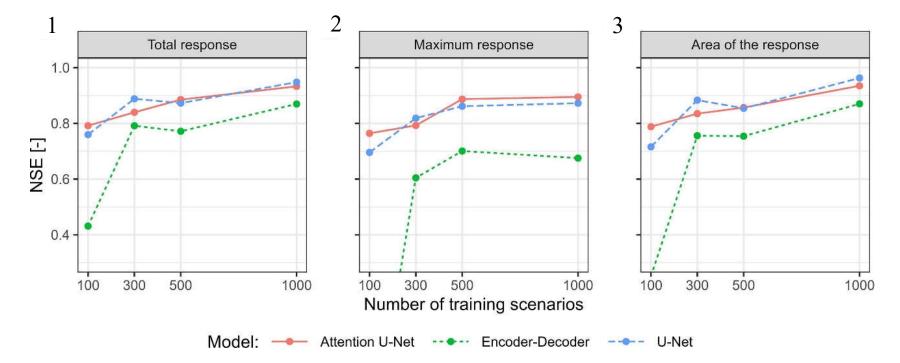


Fig. 7 NSE evaluate performance of 3 models

U-Net and Attention U-Net outperform the Encoder-Decoder model.

RESULTS & DISCUSSION

CONCLUSION

MODEL PERFORMANCE: ACCURACY AND SPEED

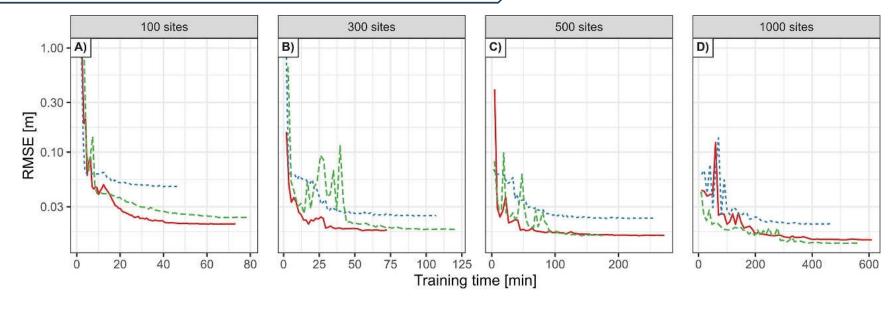


Fig. 8 Validation MSE

Add training sites improve the final results, increase the training time.

ML models: 0.06 to 0.43 seconds AMIGO: 1290 seconds (~21 mins) per run. U-Net: 3000 scenarios in the time AMIGO runs one.

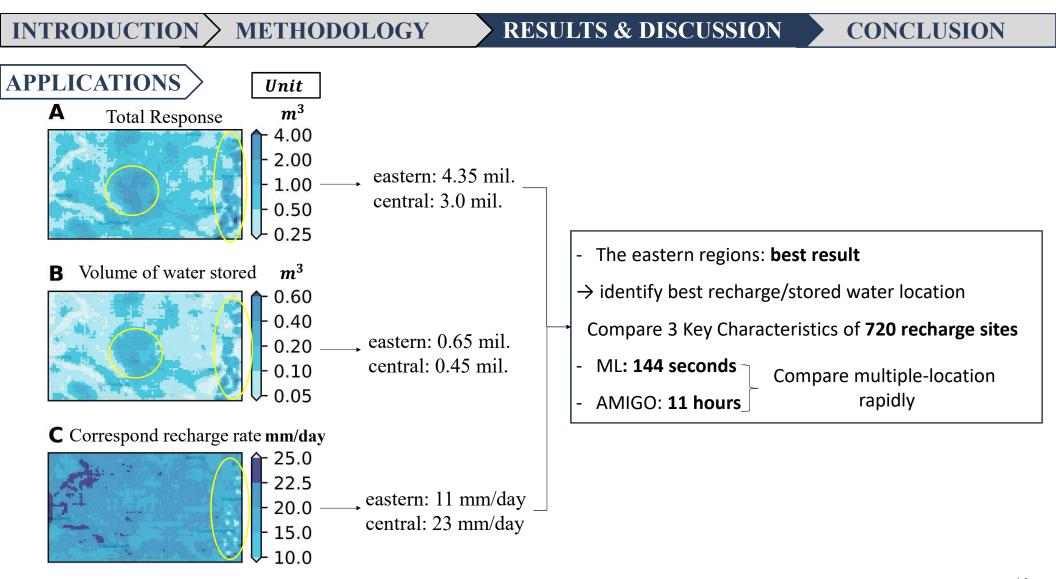


Fig. 10. Results of ML on recharge rate of 5-25mm/day over 10 ha – 7.722 recharge sites

RESULTS & DISCUSSION

CONCLUSION

MODEL LIMITATION AND INSIGHTS

MODEL	EVALUATION TIMES (seconds)	INPUTS	NSE (TOTAL RESPONSE)	STRENGTH	LIMITATIONS
Encoder-Decoder	0.06 - 0.43		0.75	Simpler, lower computational cost	Struggles with complex spatial details
U-Net	0.09 - 0.11	6 Inputs	0.95 (best)	Best performance, skip connections capture spatial details	Higher memory requirement
Attention U-Net	0.09 - 0.11		Similar to U-Net	Focuses on important regions, can improve local accuracy	No significant improvement over U-Net, higher memory demand
AMIGO Model	1290	105 Inputs		Highly accurate, attention mechanism improves focus on important regions	Extremely slow, computationally expensive

RESULTS & DISCUSSION

CONCLUSION

MODEL LIMITATION AND INSIGHTS

MODEL	EVALUATION TIMES (seconds)	INPUTS	NSE (TOTAL RESPONSE)	STRENGTH	LIMITATIONS
Encoder-Decoder	0.06 - 0.43		0.75	Simpler, lower computational cost	Struggles with complex spatial details
U-Net	0.09 - 0.11	6 Inputs	0.95 (best)	Best performance, skip connections capture spatial details	Higher memory requirement
Attention U-Net	0.09 - 0.11		Similar to U-Net	Focuses on important regions, can improve local accuracy	No significant improvement over U-Net, higher memory demand
AMIGO Model	1290	105 Inputs		Highly accurate, attention mechanism improves focus on important regions	Extremely slow, computationally expensive

→Allows more scenario evaluation, optimization in ground water management

RESULTS & DISCUSSION

CONCLUSION

HIGHLIGHT:

- **A first-step** in apply ML
- ML models: evaluate **thousands of recharge scenarios** in the time it takes the AMIGO model to **simulate one scenario**, demonstrate their potential for **real-time decision-making** in groundwater management and **optimization** of recharge strategies.
- U-Net outperformed other models with the best accuracy, evaluate thousands of scenarios with high accuracy
- Increasing training data improved accuracy, especially for area and total response.

LIMITATIONS:

- Steady-state conditions limits the model's applicability → develop transient simulation to account for dynamic changes in groundwater system over time
- Consider impact of deeper aquifer
- Higher river stages could reduce the river flux and increase the response more than the model predicts

Thank You