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RESEARCH MOTIVATION »

Expansion of surface drainage network Increased exploitation of groundwater | | Impact of drought

\/

MANAGED ARTIFICIAL RECHARGE (MAR)

MAR: infiltration, direct injection, and filtration techniques.

4

identify the optimal location, recharge rate and combination of the recharge sites

Challenge: Traditional numerical groundwater models too slow for decision-making in MAR site
optimization.

Machine Learning (ML) models: capture interaction between variables without run detail simulation
— predict groundwater response to recharge quickly and efficiently.




NSV ONP METHODOLOGY > RESULTS & DISCUSSION > CONCLUSION

OBJECTIVE >

Provide faster and more efficient estimates of groundwater response to artificial aquifer recharge

Develop Faster & Efficiency Predictive Models

Balance Between Speed and Accuracy

Determine the Required Training Data

Determine the Physical Characteristics
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METHOD >
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Data Generation: Recharge rates (5-25 mm/day) and training area (0.01-1 km?) were selected using random function

(Latin Hypercube Sampling and Orthogonal Array Latin Hypercube Sampling)
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NUMERICAL MODEL (AMIGO - Actueel Model Instrument Gelderland Oost) >

Simulate the groundwater system in the Baakse Beek catchment

Study area:
Baakse Beek catchment (Netherlands).

MODFLOW-2005: Tile drainage (DRN package),
ditches/streams (RIV package)mmp the surface water

network drains the groundwater.

Boundary: maintain at distance of three times the leakage

factor mmmp ensure not influence

In steady-state simulations, the storage coefficient is zero

and not used in the numerical or ML models

A,

.
-

e

. -\ Baakse Beek

S J....r-iE

Legend g S
(] Model extent Elevation (m a.s.0)
[ catchment border [l < 5 m
~Rivers s-125m
12.5-20.0m
W 20-27.5m A
M 275-35m :
—ey o
B -40m

Fig. 2 Baakse Beek catchment (Netherland)

Geology: Pleistocene sands, 200 m thick; highly transmissivity
— enabling groundwater flow
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MACHINE LEARNING MODEL: HOW DO THEY WORK?>

Predict steady-state groundwater response to artificial recharge.
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Fig. 3 Training process of ML models (O[] 6
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KEY CHARACTERISTICS >
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Fig. 4. Cross-sectional view of how groundwater response to artificial recharge

Maximum response

Highest increase in groundwater head

Area of response

The spatial extent where the groundwater
head increases by more than 1 cm.

Total response
Total volume affected

¥

together quantify performance of ML
models in predict groundwater system’s

reaction to artificial recharge.
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MODEL PERFORMANCE: FACTOR EFFECT>
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Fig. 5 Map view of response for 3 recharge sites

The recharge sites selected for their asymmetric response caused by the interaction between the groundwater and the
surface water network (Groote Beek River and IJssel River). 8
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MODEL PERFORMANCE: ACCURACY AND SPEED >
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Fig. 7 NSE evaluate performance of 3 models

U-Net and Attention U-Net outperform the Encoder-Decoder model.
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MODEL PERFORMANCE: ACCURACY AND SPEED >
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Fig. 8 Validation MSE

Add training sites improve the final results, increase the training time.

ML models: 0.06 to 0.43 seconds
AMIGO: 1290 seconds (~21 mins) per run.
U-Net: 3000 scenarios in the time AMIGO runs one.
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APPLICATIONS > [ vnit
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Fig. 10. Results of ML on recharge rate of 5-25mm/day over 10 ha — 7.722 recharge sites

RESULTS & DISCUSSION CONCLUSION

- The eastern regions: best result
—> identify best recharge/stored water location

Compare 3 Key Characteristics of 720 recharge sites

Compare multiple-location

rapidly

- ML: 144 seconds
- AMIGO: 11 hours\JL

20.0 eastern: 11 mm/day |
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MODEL LIMITATION AND INSIGHTS >

RESULTS & DISCUSSION CONCLUSION

EVALUATION NSE (TOTAL
MODEL TIMES (seconds) INPUTS RESPONSE) STRENGTH LIMITATIONS
Simpler, lower Struggles with
Encoder-Decoder 0.06-0.43 0.75 pet, ° complex spatial
computational cost :
details
Best performance,
U-Net 0.09-0.11 0.95 (besty ~ Skip connections - Higher memory
6 Inputs capture spatial requirement
details
Focuses on No significant
Attention U-Net 0.09-0.11 Similar to U-Net P Qrtant resions, - 1mp roverpent over
can improve local  U-Net, higher
accuracy memory demand
Highly accurate,
attention Extremely slow,
AMIGO Model 1290 105 Inputs mechanism computationally
improves focus on expensive

important regions
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MODEL LIMITATION AND INSIGHTS >

EVALUATION NSE (TOTAL
MODEL TIMES (seconds) INPUTS RESPONSE) STRENGTH LIMITATIONS
Simpler, lower Struggles with
Encoder-Decoder 0.06-0.43 0.75 pet, ° complex spatial
computational cost :
details
Best performance,
U-Net 0.09-0.11 0.95 (best) skip COIll’lCC’FlOl’lS ngher fnemory
6 Inputs capture spatial requirement
details
Focuses on No significant
Attention U-Net 0.09-0.11 Similar to U-Net P grtant resions, - 1mp roverpent ovet
can improve local  U-Net, higher
accuracy memory demand
Highly accurate,
attention Extremely slow,
AMIGO Model 1290 105 Inputs mechanism computationally

improves focus on expensive
important regions

—> Allows more scenario evaluation, optimization in ground water management
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HIGHLIGHT:

- A first-step in apply ML

- ML models: evaluate thousands of recharge scenarios in the time it takes the AMIGO model to simulate one

scenario, demonstrate their potential for real-time decision-making in groundwater management and optimization

of recharge strategies.

- U-Net outperformed other models with the best accuracy, evaluate thousands of scenarios with high

accuracy

- Increasing training data improved accuracy, especially for area and total response.

LIMITATIONS:

- Steady-state conditions limits the model’s applicability — develop transient simulation to account for dynamic
changes in groundwater system over time

- Consider impact of deeper aquifer

- Higher river stages could reduce the river flux and increase the response more than the model predicts
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