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= DECOVALEX was initiated in 1992 as an international cooperative project to
address modeling challenges in deep geological repository (DGR) systems,
involving nuclear waste organizations, regulators, and research teams.

= DECOVALEX focuses on advancing multiphysics simulations, improving
coupled processes (e.g. thermo(T), hydraulic(H), mechanical(M), chemical(C))
models, validating numerical models through laboratory and field
experiments, and provide a platform for knowledge exchange and capacity

building.
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Introduction

= High-level radioactive waste (HLW), comprising spent nuclear fuel (SNF) and
reprocessed waste, is highly radioactive, has long half-lives, and poses
significant toxicity, necessitating safe disposal and long-term isolation.

= Deep geological disposal with is generally adopted
worldwide for final disposal of HLW management.

= KBS-3 disposal concept (SKB, 1983)

= multi-barrier system = + natural barrier
Cladding tube Spent nuclear fuel Bentonite clay .
F i Natural barrier system:
Host rock
Fuel pellet of Copper canister Crystalline Underground
uranium dioxide with cast iron insert  bedrock repository facility (SKB’ 2006)
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Modeling Object - lodine-129

= Jodine-129 (I-129) is primarily produced through uranium fission. In the
HLW safety assessment, [-129 is a significant radionuclide.
= Long half-life (15.7Ma): It remains radioactive for an extremely long period.

= High mobility: In aqueous environments, I-129 primarily exists as iodide (I") and
iodate (I037), both of which are highly mobile.

= Migration modeling and long-term safety analysis are necessary to predict and
evaluate its potential effects on the environment and human health.
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Modeling Object - Cigar Lake

= Cigar Lake uranium deposit located in Canada, at a depth of approximately
450 m, formed by hydrothermal processes.

= Hydrothermal alteration of the host sandstone leads to the formation of an

illite-rich clay layer, ranging in thickness from 5 to 30 m. These geological
features prevent radionuclides from migrating to the surface.

= Due to its geological structure being similar to the concept of HLW final
disposal, it is regarded as an important natural analogue for study.
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Objectives

= To verify the feasibility of the model by comparing simulation results with field
data.

= To understand the long-term transport behavior of I-129 in fractured and
porous media.

= To calibrate long-term simulation predictions and contribute to the HLW final
disposal.
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Model Setting

= Simulation focuses on a depth range from -
410 meters to -460 meters.

= The model is in the range from -25m to 25m,
with center of uranium orebody located at O.

= The material is homogeneous.

= Diffusion-only study case.
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Model Setting

= [-129 is primarily produced through uranium fission.

= Initial concentration of
= [-129 is set as O.

= U-238 follows a normal gaussian distribution.

= Dirichlet boundary condition
= Concentration of I-129 on right and left ends are set as O.

= Simulation time

= The model can be run for up to 1.4 billion years, which is the age of the uranium
formation.



Governing Equation

= Diffusion equation (1D)
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= Source term

= [-129 Production and Decay

S=alUlYAg —Ag xc
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U concentration {(wt%)

Massive clay zone: illite + kaalinite

~
’ 331 ppm)

Ferric-rich clay-ore interface: illite + hematite + siderite + kaolinite 1119 ppm
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Conclusion and
Fuiure Work e
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= The simulation results do not fit well with the measured data.
One possible explanation for this might be the assumption of (Truche et al., 2018)
homogeneity in the model. In real case, the geological medium likely exhibits
heterogeneity, including variations in mineral composition and porosity.

= The constant De and Kd values used in the model may oversimplify the
system. Factors such as chemical reaction, scale effects and localized
fractures could alter effective diffusion coefficients and adsorption behavior,
influencing radionuclide transport.

= Future work should include heterogeneous conditions, through assigning
distinct properties to different regions. Additionally, transitioning to two-
dimensional and three-dimensional simulations could provide a more
accurate representation of complex transport dynamics in natural systems.

(1)
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