The Shear Sense of the Chegualin Fault 車瓜林斷層的剪切行為

Presenter : Yu-Hsun Chang Advisor :Prof. Wen-Jeng Huang Date : 2025/03/07

Chegualin Fault

- Chegualin fault is a thrust fault with strike-slip component, striking NE-SW and dipping to the east.
- The entire Chegualin Fault is located within the Gutingkeng Formation, which is mainly composed of massive mudstone.

Modified after CGS, 2013; Lin et al., 2021

- Massive mudstone in Gutingkeng Formation.
- The dark broad band is clearly observable.
- A fault zone composed of several dark broad bands.

Jhuang, 2023

- Black band
 - The dark broad band is composed of many black bands.

Research Problem

- Near Zhongliao tunnel region indicate relative left-lateral shearing.
- South of Chegualin fault indicate relative right-lateral shearing.
- Lack of outcrop and microstructural evidence to support these observations.

Methodology

- Outcrop observation
- Microstructral analysis

Strike-perpendicular

Strike-parallel

Jhuang, 2023

Thin section of the strike-perpendicular sample

Y-B-P-R

- Y shear bands : parallel to the experimental fault boundaries. They can be discontinuous but are located entirely within the deforming gouge
- B shear bands : similar to the Y-shears, but they are continuous, wider and are located close to the boundary

S-C-C'

- C planes (*Cisaillement*) : accommodate shear deformation parallelly to the fault boundaries
- C' planes : conjugate shear planes oriented similarly to the R shear bands
- S foliation (*Schistosité*) : the penetrative fabric, defined by alignment of deformed minerals within the sheared rock

Literature review

G. Volpe et al.(2022) Y-B-P-R or S-C-C'? Suggestion for the nomenclature of experimental brittle fault fabric in phyllosilicate-granular mixtures

Microstructure Experimental procedure

- Selected four rocks from shear zones of the Apenninic basement.
- XRD analysis provided semi-quantitative mineralogical analysis of the rocks.
- The starting materials were prepared by crushing the sampled rocks and sieving the

powders between 63 and 125 μ m. (a)

Label	Mineralogy			
	Phyllosilicates		Granular minerals	
Phy58	58%	Muscovite Paragonite Clinochlore	42%	Quartz Rutile
Phy46	46%	Muscovite Clinochlore	54%	Quartz Hematite Rutile
Phy35	35%	Muscovite Paragonite Clinochlore	65%	Quartz Rutile
Phy24	24%	Muscovite Pyrophyllite Clinochlore	76%	Quartz Carbonates Hematite

Microstructure Result (Phyllosilicate rich gouges)

Microstructure Result (Granular-rich gouges)

Conclusion

- Y-B-P-R fabric, associated to strong faults, where shear deformation is accommodated by cataclastic processes and strain localization.
- S-C-C' fabric, associated to weak faults, which are characterized by frictional sliding along phyllosilicate foliae as main deformation mechanism.
- The transition from Y-B-P-R to S-C-C' is observed for phyllosilicates content >30%.

Future work

- Identifying of thin section
- XRD analysis of the sample

Thank you for your listening