A software integrating sophisticated transport analytical model, GIS, and human health risk assessment for comprehensive site evaluation of groundwater contaminated with chlorinated solvents

> Advisor : Prof. Jui-Sheng Chen Prof. Ching-Ping Liang Student : Hong-Yan Liao Date : March 14th, 2025

Outline

- Introduction
- Methodology
- Results and discussions
- Conclusions and future work

Contaminated site evaluation

Groundwater contamination

Groundwater resources are important. However, the contamination of the subsurface environment pose threats to human health.

Chlorinated solvents are common contaminants found in contaminated groundwater.

- Used for dry cleaning, metal degreasing
- Dense non-aqueous phase liquids (DNAPLs)
- Carcinogenic

Human health risk assessment (HHRA)

- HHRA is the process to estimate the potential adverse health effects in humans who are exposed to chemicals in contaminated environmental media.
- HHRA helps in decision-making for site remediation and risk management, also can help governments to deliver technical knowledge to the public.

Four steps of human health risk assessment process

Previous contaminants transport analytical solution software

• BIOCHLOR

BIOCHLOR interface

- Excel-based table software.
- Most used software simulates remediation by natural attenuation released in 2000.

All contaminants can only use the same retardation factor.

BIOCHLOR Natural	Attenuation	Decision Sup	port System	System Cape Canave			veral	Data Input Instructions:				
			Version 2.2		Fire	raining	Area		115 -	-1. Ent	er value direc	tiyor
			Excel 2000	1	-	Run Nam	0		∧ or	2. Cal	culate by fillin	g in gray
TYPE OF CHLORINATED SC	DLVE NT:	Ethen es ®	5. GENERAL						0.02	cells	Press Enter	then cl
		Ethanes O	Simulation Time*	33	(yr)	L_L	\rightarrow		store for	nulas, hit '	Restore Form	ulas" bu
1. ADVECTION			Modeled Area Width*	700	(#) 10	T		V	ariable*-	Data	used directly	in model.
Seepage Velocity*	Vs	111,7 (ft/yr)	Modeled Area Length*	1085	(#)	-	-	Test if				200 DOL 10 DO
or		A	Zone 1 Length*	1085	(1)			Biotran	formatio	in .	Natural Att	enuation
Hydraulic Conductivity	к	1,8E-02 (cm/s	ac) Zone 2 Length*	0	(意)	Zone 2=		s Occu	rring	\rightarrow	Screening	Protocol
Hydraulic Gradient	i	0 (fo'ft)				L - Zone	1					000000000
Effective Porosity	n	0,2 (-)	6. SOURCE DATA T	YPE:	Decayi	ng	1	Vertical	Plane Si	ource: Di	etermine Sou	rce Well
2. DISPERSION	1	Contract of the	Source Options		Single	Planar	/	Locatio	and Inp	ut Solver	nt Concentrat	ons
Alpha x*	40 (ft)	Calc. Aloba x					1					
(Alpha y) / (Alpha x)*	0,1 (-)		Source Thickness in Sat. Z	one*	56	(#)	And					
(Alpha z) / (Alpha x)*	1,E-99 (-)		Y1								and the second se	
3. ADSORPTION			Width* (ft) 105			1.40		-				3
Retardation Factor*						Ka		1	1			
or	Internet and the second	1	Conc. (mg/L)* C1			(1/yr)		/ /	2			
Soil Bulk Density, rho	1,6 (kg/L)	PCE ,056			0,2	-7	/				
FractionOrganicCarbon, foc	1,8E-3 (-)		TCE 15,8			0,2	1	1	Viewoff	Plume Lo	oking Down	
Partition Coefficient	Koc 🎽		DCE 98,5			0,2	/ /	·				
PCE	426 (L/kg) 7,13 (-)	VC 3,08			0,2 /	1	Obs	erved Ce	nterline (Conc. at Moni	toring Wells
TCE	130 (L/kg) 2,87 (-)	E TH 0,03			0,2/	/					
DCE	125 (L/kg) 2,80 (-)				1 9	/					
VC	30 (L/kg) 1,43 (-)	7. FIELD DATAFOR COMP	ARISO	N /		_	_	_	_		
ETH	302 (L/Kg) 5,35 (-)	PCE Conc. (mg/L)	,050						_	-	_
COMMON RECORDER TION	used in modely	= = 2,87 *	DCE Conc. (mg/L)	15,6	,22	776	,024	,019		_		_
Tone 1	-1st Order Dec	ay Coemcient*	VC Conc (mg/L)	30,3	3,40	,//0	1,2	,000		-	10 E	_
	2.000	namine (yrs) Yield	ETH Cana (mg/L)	0.0	3,00	,197	4,52	3,024		-	-	-
TCE DCE	1000	0,79	Distance from Source (#)	0,0	580	650	030	1085		-		-
	0.700	0,74	Data Data Collected	100.0	000	000	330	1005				
VC > FTH	0,100	0,04	8 CHOOSE TYPE OF OUTP	HIT TO	SEE							
700e2	3 (100	ball life (urs)	a. choose thre of our	5110	JLL.	_		-				
PCE TCE	0.000	Industrie (yrs)							H	In	Restore	RESET
TCE	0.000	HEL					AV			p	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	0.000		KON CENTERLINE		KUN ARRAY							
VC SETH	0.000	-							SEE OU	TPUT	Paste Exa	
VG -> EIH	0.000											

- HYDROSCAPE
 - MATLAB-based window software.
 - With map view result.
 - Released in 2017.

Only can simulate single contaminant.

HYDROSCAPE interface

MUSt software

MUSt (MUltiSpecies transport analytical model):

- Using analytical solutions (Liao et al., 2021) for simulating transport of chlorinated solvent contaminant and its degradation products, without the limitations of those previous software.
- Integrated with human health risk assessment for groundwater ingestion.
- With user-friendly interface and multiple visualize output results.

What other features may be needed?

- Site information management module
 - Multiple exposure pathways

Introduction

Introduction

Why new features?

- Site information management module:
 - Improve the efficiency
 - Better management of data
- Multiple exposure pathways:
 - Accurate Dose Estimation
 - Provide a solid scientific basis

7

Introduction

Objective

• This study enhances existing software MUSt, integrating advanced functionalities for managing and visualizing site information (GIS), and expands the human health risk assessment module to consider multiple exposure pathways.

Software usage flow chart

Methodology

Contaminant transport model

• MUSt software base on the three-dimensional multispecies ADEs from Liao et al., 2021:

 $g_{i-1 \rightarrow i}$: yield coefficient(-)

Exposure dose calculation and exposure pathways

¹ USEPA, 1989
 ² Andelman, 1990

Exposure dose (average daily dose, ADD) are calculated as:

- Groundwater ingestion¹: $ADD = C_w \times \frac{IR \times EF \times ED}{BW \times AT}$
- Groundwater inhalation through shower²: $ADD = (C_{a1} \times IR_s \times t_1 + C_{a2} \times IR_s \times t_2) \times \frac{EV_s \times EF \times ED}{BW \times AT}$ where $C_{a1} = \frac{1}{2} \times \frac{C_W \times f \times F_s \times t_1}{V_a} \times CF$, $C_{a2} = \frac{C_W \times f \times F_s \times t_2}{V_a} \times CF$
- Groundwater inhalation through indoor washing¹: $ADD = C_a \times \frac{IR_w \times EF \times ED}{BW \times AT}$

where
$$C_a = \frac{C_W \times f \times F_W}{V_h \times ER \times MC} \times CF$$

• Groundwater dermal contact through shower or washing¹: $ADD = DA \times SA \times \frac{EV \times EF \times ED}{BW \times AT}$

For $t \le 2.4\tau$ $DA = 2 \times FA \times K_p \times C_w \times \sqrt{6 \times \frac{\tau \times t}{\pi}} \times CF$ For $t > 2.4\tau$ $DA = FA \times K_p \times C_w \times \left[\frac{t}{1+B} + 2 \times \tau \left(\frac{1+3 \times B+3 \times B^2}{(1+B)^2}\right)\right] \times CF$

ADD: average daily dose (mg/kg-day)
C_w: contaminant concentration in groundwater (mg/L)
EF: exposure frequency (days/year)
ED: exposure duration (years)
BW: body weight (kg); AT: average lifetime (days)

Parameters in ADD calculation

- IR: water ingestion rate (L/day)
- IR_s : shower inhalation rate $(m^3/hour)$, IR_w : inhalation rate (m^3/day)
- *EV*: event frequency (events/day), EV_s : shower event frequency (events/day)
- C_a : contaminant concentration in air (mg/m^3)
- C_{a1} : contaminant concentration in air while shower (mg/m^3) , C_{a2} : contaminant concentration in air after shower (mg/m^3)
- t_1 : shower time (*hour*), t_2 : the time still stays in bathroom after shower (*hour*)
- V_a : bathroom volume (L), V_h : house volume (L)
- F_s : shower water flow rate (L/hour), F_w : daily water usage (L/day)
- *f*: evaporation fraction (-)
- *ER*: indoor air exchanged rate (air changes/day)
- *MC*: air mixture coefficient (-)
- DA: exposure dose in single event (mg/cm^2)
- FA: absorb fraction (-)
- SA: skin surface area (cm^2)
- K_p : skin permeability coefficient (cm/hour)
- τ : lag time per event (hour)
- B: Relative permeability coefficient ratio of the contaminant from the stratum corneum to the epidermis (-)
- *t*: time of skin contact in single event (hour)
- *CF*: unit transfer factor $(L/m^3 \text{ or } L/cm^3)$

Risk calculation

• Non-carcinogenic and carcinogenic risk indexes are calculated as:

• Non-carcinogenic:
$$R_{ep} = \frac{ADD}{RfD_{ep}}$$

• Carcinogenic: $R_{ep} = ADD \times SF_{ep}$

ep = oral, inhalation, dermal contact

• The total non-carcinogenic and carcinogenic risk are calculated as:

$$R_{total} = R_{oral} + R_{inh} + R_{dermal}$$

ADD: average daily dose (mg/kg-day)RfD: reference dose (mg/kg-day);SF: cancer slope factor $(\frac{1}{mg/kg-day})$ RfC: inhalation reference dose(mg/m³);IR: inhalation rate(m³/day) ABS_{GI} : fraction of chemicals absorbed in the gastrointestinal tract(-)

Transfer function Inhalation:

$$RfD_{oral} = RfC \times \frac{IR_{inh}}{BW}$$
$$SF_{oral} = SF_{inh} \times \frac{BW}{IR_{inh}}$$
Dermal contact:

$$RfD_{dermal} = RfD_{oral} \times ABS_{GI}$$
$$SF_{dermal} = \frac{SF_{oral}}{ABS_{GI}}$$

Development tools

• .NET is a platform provides a large class library, enabling developers to create high-performance applications.
• Csharp is the most popular programming language in .NET which can build a wide range of applications from desktop to mobile.

- Visualization toolkit is a library for 3D computer graphics, image processing, and scientific visualization.
- Widely used in fields like medical imaging, computational fluid dynamics, and geological data visualization.

• Gmap.NET is a library in .NET provides interactive maps from various providers, supports creating objects on map.

Results and discussions

User interface : Site

By importing shapefile and text file, the boundary of the site and the well location can be shown on the map.

User interface : Geology

			File						
					MUSt	- Set up borehole o	data record -	O Input	
									Material
	ite Boreholes txt	× +			Site	~	E	lit Clea	2 : Fine Sand
	د <u>د بع بم بع</u>				Site	BH-1	x 237647.575	2732199.988 6	3 : Gravel_with_Sand
佰条	編輯 1双 1兄				Geology	BH-1	237647.575	2732199.988 1	I : sanay_siir 4 : Muaay_sanasione
Name	X Y	ZSoil_I	ID Material_Name	a . a		BH-1	237647.575	2732199.988 0	BH-1
BH - 1 BH - 1	237647.575 237647.575	2732199.988 2732199.988	6.996 1 1.996 2	Sandy_Silt Fine Sand	Hydrology	BH-1 BH-1	237647.575	2732199.988 -	BH-2
BH - 1 BH - 1	237647.575	2732199.988	0.646 3	Gravel_with_Sand		BH-2	237505.7507	2732062.319 7	t BH-7
BH-1	237647.575	2732199.988	-16.004 4	Muddy_Sandstone	Chemistry	BH-2	237505.7507	2732062.319 -(2732300 BH-6 BH-9
BH-2 BH-2	237505.7507 237505.7507	2732062.319 2732062.319	7.5348 1 -0.1152 2	Sandy_Silt Fine Sand	Site Conceptual	BH-2	237505.7507	2732062.319 -:	2732200 27732200 BH-8
BH-2	237505.7507	2732062.319	-2.2152 3	Gravel_with_Sand	Model Integration	BH-2	237303.7307	2732062.313 -	273210-
BH-2 BH-2	237505.7507	2732062.319	-15.9652	4 Muddy_Sandstone	Risk Assessment				273200 100 F
BH-3 BH-3	237405.6247 237405.6247	2731874.484 2731874.484	8.2259 1 -1.9741 3	Sandy_Silt Gravel with Sand	Nisk Assessment				
BH-3 BH-3	237405.6247	2731874.484	-9.5741 4	Muddy_Sandstone	Output				273 1700 80
BH-4	237603.7981	2731787.782	8.2559 1	Sandy_Silt					273 10 100L
BH-4 BH-4	237603.7981 237603.7981	2731787.782 2731787.782	1.0559 2 0.0059 3	Fine_Sand Gravel with Sand					273 00 200 , , , , , , , , , , , , , , , ,
BH-4	237603.7981	2731787.782	-8.3941 4	Muddy_Sandstone					y/ ^Z 23730@3740@3750@3760@37700.3780@3790@3800038100
BH-5	237659.3649	2731605.419	7.2987 1	andy_Silt					V_x X-Axis
BH-5 BH-5	237659.3649 237659.3649	2731605.419 2731605.419	0.5487 2 -0.8513 3	Fine_Sand Gravel with Sand					
BH-5	237659.3649	2731605.419	-7.7513 4	Muddy_Sandstone					
BH-6	237910.071	2731836.549	8.9415 1	Sandy_Silt					
BH-6 BH-6	237910.071 237910.071	2731836.549 2731836.549	1.7415 3 -5.9085 4	Gravel_with_Sand Muddy Sandstone	By imp	porting tex	xt file,		
BH-6	237910.071	2731836.549	-14.5585	4 Muddy_Sandstone	the hor	ahola raci	ord ca	n ha show	in as the cylinder inside the boundary
BH-7 BH-7	237966.2291	2732019.724	5.0676 3	Gravel_with_Sand			oru ca		in as the cynnicer more the boundary.
BH-7 BH-7	237966.2291 237966.2291	2732019.724 2732019.724	-6.8324 4 -12.9324	Muddy_Sandstone 4 Muddy Sandstone					

User interface : Hydrology

2731605.419

2731836.549

2732019.724

2731886.543

7.1887

7.5657 7.85

237659.3649

237910.071

237966.2291

238083.3117

BH-6

BH-7

BH-9

By importing text file,

the hydraulic head record can be shown on the map picture, also to generate flow field and average flow direction.

User interface : Chemistry

User interface : Output

Results and discussions

20

- TCE

100

x [m]

120

140

160 180 200

- a. Inhalation through shower using groundwater
- b. Inhalation through indoor washing using groundwater
- c. Total risk

Conclusions and future work

- This study enhance the software's ability, incorporate geographic, geological, hydrological, and chemical visualizations, while also consider multiple exposure pathways. These improvements provide a comprehensive framework for site evaluation and decision-making.
- The new version software can improve the efficiency of site management while enhancing risk communication, enabling more informed decisions and fostering better stakeholder engagement.
- Future work :
 - Improve the risk calculation function with more exposure pathways considered.
 - Add probabilistic method into software for the more complex contaminated site evaluation.

Thank you for your attention!

Reference

- United States Environmental Protection Agency : <u>https://www.epa.gov/</u>
- Exact analytical solutions with great computational efficiency to three-dimensional multispecies advectiondispersion equations coupled with a sequential first-order reaction network : https://www.sciencedirect.com/science/article/pii/S0309170821001731
- HYDROSCAPE: A new versatile software program for evaluating contaminant transport in groundwater : https://www.sciencedirect.com/science/article/pii/S235271101730050X
- 103年環保署 土壤及地下水污染場址健康風險評估方法

$$D_{x}\frac{\partial^{2}C_{1}(x,y,z,t)}{\partial x^{2}} + D_{y}\frac{\partial^{2}C_{1}(x,y,z,t)}{\partial y^{2}} + D_{z}\frac{\partial^{2}C_{1}(x,y,z,t)}{\partial z^{2}} - v\frac{\partial C_{1}(x,y,z,t)}{\partial x}$$

$$-\mu_{1}R_{1}C_{1}(x,y,z,t) = R_{1}\frac{\partial C_{1}(x,y,z,t)}{\partial t}, \quad 0 \le x \le \infty, \quad 0 \le y \le W, \quad 0 \le z \le H$$
(1a)

$$D_x \frac{\partial^2 C_i(x, y, z, t)}{\partial x^2} + D_y \frac{\partial^2 C_i(x, y, z, t)}{\partial y^2} + D_z \frac{\partial^2 C_i(x, y, z, t)}{\partial z^2} - v \frac{\partial C_i(x, y, z, t)}{\partial x}$$

$$-\mu_{i}R_{i}C_{i}(x,y,z,t) + g_{i-1\to i}\mu_{i-1}R_{i-1}C_{i-1}(x,y,z,t) = R_{i}\frac{\partial C_{i}(x,y,z,t)}{\partial t} ,$$

 $0 \le x \le \infty, \ 0 \le y \le W, \ 0 \le z \le H \quad i = 2, 3, 4, 5$

I.C.

 $C_i(x, y, z, t = 0) = 0 \ 0 \le x \le \infty, \ 0 \le y \le W, \ 0 \le z \le H$ i = 1, 2, 3, 4, 5 B.C.

(1b)

(2)

$$C_i(x = 0, y, z, t) = C_{i,0}[H(y - y_1) - H(y - y_2)] \cdot [H(z - z_1) - H(z - z_2)]$$

$$i = 1, 2, 3, 4, 5$$

(3a)

$$\frac{\partial C_i(x, y = 0, z, t)}{\partial y} = 0 \quad i = 1, 2, 3, 4, 5$$
(5)

$$\frac{\partial C_i(x, y = W, z, t)}{\partial y} = 0 \quad i = 1, 2, 3, 4, 5$$
(6)

$$\frac{\partial C_i(x, y, z = 0, t)}{\partial z} = 0 \quad i = 1, 2, 3, 4, 5$$
(7)

$$\frac{\partial C_i(x, y, z = H, t)}{\partial z} = 0 \quad i = 1, 2, 3, 4, 5$$
(8)

SoftwareX 6 (2017) 261–266

contaminant cancer

四氯乙烯PCE	Bladder cancer, liver cancer, kidneys cancer and blood system related cancers
三氯乙烯TCE	Kidney, liver, and lymphoma

氯乙烯VC

Liver cancer, brain cancer, lung cancer, blood cancer