

Assessment of Active Tectonics Using Geomorphic Indices in the Badlands of Southwestern Taiwan

<u>Presented by:</u>

Kifayat Ali

Supervisor:

Prof. Maryline Le Béon

Institute of Applied Geology:

National Central University (NCU), Taiwan

Tectonic Setting of Taiwan:

Location:

Taiwan lies at the boundary where the Eurasian Plate collides with the Philippine Sea Plate.

Southwest Taiwan:

- > Part of the fold-and-thrust belt.
- Ongoing tectonic uplift and subsidence is due to compression and under thrusting.

Geotectonic framework and major structural units of Taiwan between the Eurasian and Philippine Sea plate.

Research Area

Geological Composition:

- This region comprises a fold-and-thrust belt with major reverse faults such as the Chishan, Chegualin, and Gutingkeng Faults, as well as the Nanlao Syncline.
- The region's badlands are primarily formed from Late Miocene to Early Pleistocene Gutingkeng Mudstone, which is 3 to 4 kilometers thick and contains thin sandy layers and shales.

Image from Field in the Badlands of Southwestern Taiwan.

Ongoing Deformation of Southwestern Taiwan

Horizontal Velocity Map Vertical Uplift: The map uses a color gradient to 23'30' Color scale: Represents uplift (redindicate horizontal velocity rates of yellow) and subsidence (blue) in mm/yr. movement. > Blue regions indicate areas with slower horizontal movement. 20 23°00' > Red regions indicate areas with 10 (mm/yr) faster horizontal movement. -10 0 Uplift rate (Black Arrows (Velocity Vectors) \succ The length of arrows represents the magnitude of horizontal^{22'30'} motion. 5 8 ·30 mm/yr Upward (\blacktriangle) indicate uplift. 22°00' Downward ($\mathbf{\nabla}$) indicate subsidence. \geq Size of triangles represents the rate of 120'00' 120'30' uplift or subsidence. 20 40 60 Horizontal Velocity (mm/yr)

Ching EK et al. (2021)

Research Goal

□ The **Primary Goal** of my study is to quantify and understand the **long-term deformation** processes in **Southwestern Taiwan**.

Research Focus:

Analyze how Geomorphic Indices in badlands reveal uplift and erosion.

- InSAR (LOS) = Short-Term Surface Deformation monitoring (e.g., 10–50 years).
- Geomorphic indices = Long-term landscape response to tectonics ("Pgtk" Early Pleistocene

~ 0.8 Ma).

(Pathier et al., 2014)

Methodology

Geomorphic Indices

Geomorphic indices are quantitative measures used to detect changes in topography caused by tectonic activities, such as uplift or subsidence.

Basin Relief:

Difference in elevation between the highest and lowest point.

200 - 155 = 45 m

Hypsometric Integral

The **Hypsometric Integral (HI)** is a numerical value that represents the **distribution of elevations** within a drainage basin.

Convex Curves

High HI values

Active tectonics

- > High HI \rightarrow tectonically active, steep slopes, less eroded.
- $\succ Moderate HI \rightarrow balanced uplift and erosion.$
- > Low HI \rightarrow highly eroded, low relief.

(h/H)

Youth Stage

Conclusion

Future work

Complete Site 4 Analysis:

- Calculate Hypsometric Integral and Basin Relief for interested sub-basins.
- Compare results with the other three sites to identify spatial variations in tectonic activity.

Additionally, focus on understanding the variability of curves across all sites.

Thank you, everyone, for your valuable time and attention.